On the Boltzmann equation for long-range interactions

被引:125
作者
Alexandre, R
Villani, C
机构
[1] Univ Orleans, UMR 6628 CNRS, F-45067 Orleans 2, France
[2] Ecole Normale Super Lyon, Unite Math Pures & Appl, F-69364 Lyon 07, France
关键词
D O I
10.1002/cpa.10012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Boltzmann equation without Grad's angular cutoff assumption. We introduce a suitable renormalized formulation that allows the cross section to be singular in both the angular and the relative velocity variables. Angular singularities occur as soon as one is interested in long-range interactions, while singularities in the relative velocity variable Occur in the study of soft potentials, in particular, Coulomb interaction. Together with several new estimates. this new formulation enables us to prove existence of weak solutions and to give a proof of a conjecture by Lions (appearance of strong compactness) under general, fully realistic assumptions. (C) 2002 John Wiley & Sons, Inc.
引用
收藏
页码:30 / 70
页数:41
相关论文
共 49 条
[1]   Entropy dissipation and long-range interactions [J].
Alexandre, R ;
Desvillettes, L ;
Villani, C ;
Wennberg, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (04) :327-355
[2]   A definition of renormalized solutions for Boltzmann equation without cutoff [J].
Alexandre, R .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (11) :987-991
[3]   On 3D Boltzmann nonlinear operator without cutoff [J].
Alexandre, R .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (02) :165-168
[4]   On some related non homogeneous 3D Boltzmann models in the non cutoff case [J].
Alexandre, R .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2000, 40 (03) :493-524
[5]   Around 3D Boltzmann non linear operator without angular cutoff, a new formulation [J].
Alexandre, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (03) :575-590
[6]  
ALEXANDRE R, 1999, LANDAU APPROXIMATION
[7]  
ALEXANDRE R, 1999, COMMUNICATION
[8]   INTERMOLECULAR FORCES OF INFINITE RANGE AND THE BOLTZMANN-EQUATION [J].
ARKERYD, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1981, 77 (01) :11-21
[9]   FLUID DYNAMIC LIMITS OF KINETIC EQUATIONS-II CONVERGENCE PROOFS FOR THE BOLTZMANN-EQUATION [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, CD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (05) :667-753
[10]   The acoustic limit for the Boltzmann equation [J].
Bardos, C ;
Golse, F ;
Levermore, CD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 153 (03) :177-204