Applications of Raman spectroscopy in graphene-related materials and the development of parameterized PCA for large-scale data analysis

被引:35
作者
Elias Campos, Joao Luiz [1 ]
Miranda, Hudson [2 ]
Rabelo, Cassiano [2 ]
Sandoz-Rosado, Emil [3 ]
Pandey, Sugandha [1 ]
Riikonen, Juha [4 ]
Cano-Marquez, Abraham G. [5 ]
Jorio, Ado [1 ,2 ]
机构
[1] Univ Fed Minas Gerais, Dept Fis, BR-30270970 Belo Horizonte, MG, Brazil
[2] Univ Fed Minas Gerais, Programa Posgrad Engn Eletr, BR-30270970 Belo Horizonte, MG, Brazil
[3] US Army Res Lab, Aberdeen Proving Ground, MD 21005 USA
[4] Aalto Univ, Dept Micro & Nanosci, Espoo 02150, Finland
[5] Ctr Invest Mat Avanzados, Unidad Monterrey, Apodaca 66628, NL, Mexico
关键词
graphene; principal component analysis; applications; large-data analysis; carbon nanomaterial; CARBON; TRANSITION;
D O I
10.1002/jrs.5225
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
A methodology for the structural analysis of graphene-related materials using parameterized principal component analysis (PCA), ideal for large-scale data treatment, is introduced. First, we review different aspects of Raman spectroscopy for structural and functional characterization of sp(2)-bonded carbon materials, which are important for understanding the problem. The parameterized PCA is then introduced and applied to 2 different scenarios: to identify different sp(2) carbon structures and to identify graphene samples with different numbers of layers. Automating these Raman spectroscopy analysis techniques is desired for large-scale industrial applications. Copyright (c) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:54 / 65
页数:12
相关论文
共 39 条
[1]  
[Anonymous], 2002, Principal components analysis
[2]  
[Anonymous], 2015, Biochar for Environmental Management
[3]   Ion beam nanopatterning and micro-Raman spectroscopy analysis on HOPG for testing FIB performances [J].
Archanjo, B. S. ;
Maciel, I. O. ;
Ferreira, E. H. Martins ;
Peripolli, S. B. ;
Damasceno, J. C. ;
Achete, C. A. ;
Jorio, A. .
ULTRAMICROSCOPY, 2011, 111 (08) :1338-1342
[4]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[5]   Disentangling contributions of point and line defects in the Raman spectra of graphene-related materials [J].
Cancado, Luiz Gustavo ;
da Silva, Mateus Gomes ;
Martins Ferreira, Erlon H. ;
Hof, Ferdinand ;
Kampioti, Katerina ;
Huang, Kai ;
Penicaud, Alain ;
Achete, Carlos Alberto ;
Capaz, Rodrigo B. ;
Jorio, Ado .
2D MATERIALS, 2017, 4 (02)
[6]   Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene [J].
Davila, M. E. ;
Xian, L. ;
Cahangirov, S. ;
Rubio, A. ;
Le Lay, G. .
NEW JOURNAL OF PHYSICS, 2014, 16
[7]  
Dresselhaus M., 1996, Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications
[8]   INTERCALATION COMPOUNDS OF GRAPHITE [J].
DRESSELHAUS, MS ;
DRESSELHAUS, G .
ADVANCES IN PHYSICS, 1981, 30 (02) :139-326
[9]   Dirac Fermions in Borophene [J].
Feng, Baojie ;
Sugino, Osamu ;
Liu, Ro-Ya ;
Zhang, Jin ;
Yukawa, Ryu ;
Kawamura, Mitsuaki ;
Iimori, Takushi ;
Kim, Howon ;
Hasegawa, Yukio ;
Li, Hui ;
Chen, Lan ;
Wu, Kehui ;
Kumigashira, Hiroshi ;
Komori, Fumio ;
Chiang, Tai-Chang ;
Meng, Sheng ;
Matsuda, Iwao .
PHYSICAL REVIEW LETTERS, 2017, 118 (09)
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)