Quantitative Raman Spectrum and Reliable Thickness Identification for Atomic Layers on Insulating Substrates

被引:341
作者
Li, Song-Lin [1 ,2 ]
Miyazaki, Hisao [1 ]
Song, Haisheng [1 ]
Kuramochi, Hiromi [1 ]
Nakaharai, Shu [3 ]
Tsukagoshi, Kazuhito [1 ]
机构
[1] Natl Inst Mat Sci, WPI Ctr Mat Nanoarchitechton WPI MANA, Tsukuba, Ibaraki 3050044, Japan
[2] Natl Inst Mat Sci, ICYS, Tsukuba, Ibaraki 3050044, Japan
[3] Natl Inst Adv Ind Science & Technol, AIST, Green Nanoelect Ctr, Collaborat Res Team, Tsukuba, Ibaraki 3058569, Japan
基金
日本学术振兴会;
关键词
nanomaterial; atomic layer; Raman enhancement; characterization; KRAMERS-KRONIG ANALYSIS; TOPOLOGICAL INSULATOR; REFLECTIVITY SPECTRA; SPECTROSCOPY; PHOTOLUMINESCENCE; SCATTERING; BI2SE3;
D O I
10.1021/nn3025173
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate the possibility in quantifying the Raman intensities for both specimen and substrate layers In a common stacked experimental configuration and, consequently, propose a general and 4 Excitation Raman scattering rapid thickness identification technique for atomic-scale layers on Unprecedentedly wide-range Raman data for atomically flat MoS2 flakes are collected to compare with theoretical models. We reveal that all intensity features can be accurately captured when including optical interference effect. Surprisingly, we find that even freely suspended chalcogenide few-layer flakes have a stronger Raman response than that from the bulk phase. Importantly, despite the oscillating intensity of specimen spectrum versus thickness, the substrate weighted spectral intensity becomes monotonic. Combined with its sensitivity to specimen thickness, we suggest this quantity can be used to rapidly determine the accurate thickness for atomic layers.
引用
收藏
页码:7381 / 7388
页数:8
相关论文
共 38 条
[11]  
Edwards D. F., 1985, HDB OPTICAL CONSTANT, V1, P564
[12]   Generalized scale length for two-dimensional effects in MOSFET's [J].
Frank, DJ ;
Taur, Y ;
Wong, HSP .
IEEE ELECTRON DEVICE LETTERS, 1998, 19 (10) :385-387
[13]   Raman and resonance Raman investigation of MoS2 nanoparticles [J].
Frey, GL ;
Tenne, R ;
Matthews, MJ ;
Dresselhaus, MS ;
Dresselhaus, G .
PHYSICAL REVIEW B, 1999, 60 (04) :2883-2892
[14]   A tunable topological insulator in the spin helical Dirac transport regime [J].
Hsieh, D. ;
Xia, Y. ;
Qian, D. ;
Wray, L. ;
Dil, J. H. ;
Meier, F. ;
Osterwalder, J. ;
Patthey, L. ;
Checkelsky, J. G. ;
Ong, N. P. ;
Fedorov, A. V. ;
Lin, H. ;
Bansil, A. ;
Grauer, D. ;
Hor, Y. S. ;
Cava, R. J. ;
Hasan, M. Z. .
NATURE, 2009, 460 (7259) :1101-1105
[15]   Thickness of graphene and single-wall carbon nanotubes [J].
Huang, Y. ;
Wu, J. ;
Hwang, K. C. .
PHYSICAL REVIEW B, 2006, 74 (24)
[16]   Reliably Counting Atomic Planes of Few-Layer Graphene (n > 4) [J].
Koh, Yee Kan ;
Bae, Myung-Ho ;
Cahill, David G. ;
Pop, Eric .
ACS NANO, 2011, 5 (01) :269-274
[17]   Rapid Characterization of Ultrathin Layers of Chalcogenides on SiO2/Si Substrates [J].
Late, Dattatray J. ;
Liu, Bin ;
Matte, H. S. S. Ramakrishna ;
Rao, C. N. R. ;
Dravid, Vinayak P. .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (09) :1894-1905
[18]   Anomalous Lattice Vibrations of Single- and Few-Layer MoS2 [J].
Lee, Changgu ;
Yan, Hugen ;
Brus, Louis E. ;
Heinz, Tony F. ;
Hone, James ;
Ryu, Sunmin .
ACS NANO, 2010, 4 (05) :2695-2700
[19]   Enhanced Logic Performance with Semiconducting Bilayer Graphene Channels [J].
Li, Song-Lin ;
Miyazaki, Hisao ;
Hiura, Hidefumi ;
Liu, Chuan ;
Tsukagoshi, Kazuhito .
ACS NANO, 2011, 5 (01) :500-506
[20]   Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors [J].
Liu, Leitao ;
Kumar, S. Bala ;
Ouyang, Yijian ;
Guo, Jing .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (09) :3042-3047