Adaptive synchronization for generalized Lorenz systems

被引:35
作者
Liang, Xiyin [1 ]
Zhang, Jiangfeng [1 ]
Xia, Xiaohua [1 ]
机构
[1] Univ Pretoria, Dept Elect Elect & Comp Engn, ZA-0002 Pretoria, South Africa
关键词
adaptive observer; chaotic synchronization; persistently exciting;
D O I
10.1109/TAC.2008.928318
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In literature it is conjectured that the states of the generalized Lorenz system with an unknown parameter can not be estimated by adaptive observers. In this paper we show that this unknown parameter and the states can actually be estimated simultaneously by some kind of adaptive observer. The proof is obtained by constructing some exponential observer to achieve chaotic synchronization for the generalized Lorenz system. The result implies that more work needs to be done to apply generalized Lorenz system in secure communication.
引用
收藏
页码:1740 / 1746
页数:7
相关论文
共 21 条
[1]   On adaptive observers for state affine systems [J].
Besançon, G ;
De León-Morales, J ;
Huerta-Guevara, O .
INTERNATIONAL JOURNAL OF CONTROL, 2006, 79 (06) :581-591
[2]   Secure synchronization of a class of chaotic systems from a nonlinear observer approach [J].
Celikovsky, S ;
Chen, GR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (01) :76-82
[3]   On a generalized Lorenz canonical form of chaotic systems [J].
Celikovsky, S ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08) :1789-1812
[4]  
CELIKOVSKY S, 1994, KYBERNETIKA, V30, P403
[5]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[6]   SYNCHRONIZATION OF LORENZ-BASED CHAOTIC CIRCUITS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV ;
STROGATZ, SH .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1993, 40 (10) :626-633
[7]   CHAOS SHIFT KEYING - MODULATION AND DEMODULATION OF A CHAOTIC CARRIER USING SELF-SYNCHRONIZING CHUA CIRCUITS [J].
DEDIEU, H ;
KENNEDY, MP ;
HASLER, M .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1993, 40 (10) :634-642
[8]   Estimating the bounds for the Lorenz family of chaotic systems [J].
Li, DM ;
Lu, JA ;
Wu, XQ ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2005, 23 (02) :529-534
[9]   Observer based chaotic message transmission [J].
Morgül, Ö ;
Solak, E ;
Akgül, M .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (04) :1003-1017
[10]   PERSISTENT EXCITATION IN ADAPTIVE SYSTEMS [J].
NARENDRA, KS ;
ANNASWAMY, AM .
INTERNATIONAL JOURNAL OF CONTROL, 1987, 45 (01) :127-160