The effect of concomitant gradient fields on diffusion tensor imaging

被引:51
|
作者
Baron, C. A. [1 ]
Lebel, R. M. [1 ]
Wilman, A. H. [1 ]
Beaulieu, C. [1 ]
机构
[1] Univ Alberta, Fac Med & Dent, Dept Biomed Engn, Res Transit Facil 1064, Edmonton, AB T6G 2V2, Canada
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
DTI; concomitant fields; diffusion; gradient; REFOCUSED SPIN-ECHO; MAGNETIC-FIELD; MRI; ANISOTROPY; ARTIFACTS; RECONSTRUCTION; REDUCTION; SEQUENCE; MOTION; BRAIN;
D O I
10.1002/mrm.24120
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Concomitant gradient fields are transverse magnetic field components that are necessarily present to satisfy Maxwell's equations when magnetic field gradients are utilized in magnetic resonance imaging. They can have deleterious effects that are more prominent at lower static fields and/or higher gradient strengths. In diffusion tensor imaging schemes that employ large gradients that are not symmetric about a refocusing radiofrequency pulse (unlike StejskalTanner, which is symmetric), concomitant fields may cause phase accrual that could corrupt the diffusion measurement. Theory predicting the error from this dephasing is described and experimentally validated for both Reese twice-refocused and split gradient single spin-echo diffusion gradient schemes. Bias in apparent diffusion coefficient values was experimentally found to worsen with distance from isocenter and with increasing duration of gradient asymmetry in both a phantom and in the brain. The amount of error from concomitant gradient fields depends on many variables, including the diffusion gradient pattern, pulse sequence timing, maximum effective gradient amplitude, static magnetic field strength, voxel size, slice distance from isocenter, and partial Fourier fraction. A prospective correction scheme that can reduce concomitant gradient errors is proposed and verified for diffusion imaging. Magn Reson Med, 2012. (c) 2011 Wiley Periodicals, Inc.
引用
收藏
页码:1190 / 1201
页数:12
相关论文
共 50 条
  • [1] Minimization of Imaging Gradient Effects in Diffusion Tensor Imaging
    Oezcan, Alpay
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (03) : 642 - 654
  • [2] A diffusion gradient optimization framework for spinal cord diffusion tensor imaging
    Majumdar, Shantanu
    Zhu, David C.
    Udpa, Satish S.
    Raguin, L. Guy
    MAGNETIC RESONANCE IMAGING, 2011, 29 (06) : 789 - 804
  • [3] Effect of Increasing Diffusion Gradient Direction Number on Diffusion Tensor Imaging Fiber Tracking in the Human Brain
    Yao, Xufeng
    Yu, Tonggang
    Liang, Beibei
    Xia, Tian
    Huang, Qinming
    Zhuang, Songlin
    KOREAN JOURNAL OF RADIOLOGY, 2015, 16 (02) : 410 - 418
  • [4] On the effects of dephasing due to local gradients in diffusion tensor imaging experiments: relevance for diffusion tensor imaging fiber phantoms
    Laun, Frederik Bernd
    Huff, Sandra
    Stieltjes, Bram
    MAGNETIC RESONANCE IMAGING, 2009, 27 (04) : 541 - 548
  • [5] Oscillating Gradient Spin-Echo (OGSE) Diffusion Tensor Imaging of the Human Brain
    Baron, Corey A.
    Beaulieu, Christian
    MAGNETIC RESONANCE IN MEDICINE, 2014, 72 (03) : 726 - 736
  • [6] Estimation and application of spatially variable noise fields in diffusion tensor imaging
    Landman, Bennett A.
    Bazin, Pierre-Louis
    Prince, Jerry L.
    MAGNETIC RESONANCE IMAGING, 2009, 27 (06) : 741 - 751
  • [7] Diffusion tensor imaging with multiple diffusion-weighted gradient directions
    Jiang, Shan
    Liu, Meixia
    Han, Tong
    Liu, Weihua
    NEURAL REGENERATION RESEARCH, 2011, 6 (01) : 66 - 71
  • [8] Magic angle effect on diffusion tensor imaging in ligament and brain
    Wang, Nian
    Wen, Qiuting
    Maharjan, Surendra
    Mirando, Anthony J.
    Qi, Yi
    Hilton, Matthew J.
    Spritzer, Charles E.
    MAGNETIC RESONANCE IMAGING, 2022, 92 : 243 - 250
  • [9] Diffusion tensor imaging in schizophrenia
    Kanaan, RAA
    Kim, JS
    Kaufmann, WE
    Pearlson, GD
    Barker, GJ
    McGuire, PK
    BIOLOGICAL PSYCHIATRY, 2005, 58 (12) : 921 - 929
  • [10] An optimal direction strategy of diffusion sensitive gradient mangnetic fields in magnetic resonance diffusion tensor imaging based on generalized Fibonacci sequence
    Gao Song
    Zhu Yan-Chun
    Li Shuo
    Bao Shang-Lian
    ACTA PHYSICA SINICA, 2014, 63 (04)