Benchmarking near-term devices with quantum error correction

被引:23
作者
Wootton, James R. [1 ]
机构
[1] IBM Res Zurich, IBM Quantum, Zurich, Switzerland
关键词
quantum error correction; benchmarking; repetition code; Qiskit; CODES;
D O I
10.1088/2058-9565/aba038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Now that ever more sophisticated devices for quantum computing are being developed, we require ever more sophisticated benchmarks. This includes a need to determine how well these devices support the techniques required for quantum error correction. In this paper we introduce thetopological_codesmodule of Qiskit-Ignis, which is designed to provide the tools necessary to perform such tests. Specifically, we use theRepetitionCodeandGraphDecoderclasses to run tests based on the repetition code and process the results. As an example, data from a 43 qubit code running on IBM'sRochesterdevice is presented.
引用
收藏
页数:21
相关论文
共 50 条
[31]   The subfield metric and its application to quantum error correction [J].
Grassl, Markus ;
Horlemann, Anna-Lena ;
Weger, Violetta .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (07)
[32]   Graphical structures for design and verification of quantum error correction [J].
Chancellor, Nicholas ;
Kissinger, Aleks ;
Zohren, Stefan ;
Roffe, Joschka ;
Horsman, Dominic .
QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (04)
[33]   The multiplicative domain in quantum error correction [J].
Choi, Man-Duen ;
Johnston, Nathaniel ;
Kribs, David W. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (24)
[34]   Imaging Stars with Quantum Error Correction [J].
Huang, Zixin ;
Brennen, Gavin K. ;
Ouyang, Yingkai .
PHYSICAL REVIEW LETTERS, 2022, 129 (21)
[35]   Key ideas in quantum error correction [J].
Raussendorf, Robert .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1975) :4541-4565
[36]   Probabilities of Failure for Quantum Error Correction [J].
A. J. Scott .
Quantum Information Processing, 2005, 4 :399-431
[37]   Algebraic formulation of quantum error correction [J].
Beny, Cedric ;
Kribs, David W. ;
Pasieka, Aron .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2008, 6 :597-603
[38]   Spatial quantum error correction threshold [J].
Mizel, Ari .
PHYSICAL REVIEW A, 2024, 109 (02)
[39]   IMPLEMENTATION OF UNITARY QUANTUM ERROR CORRECTION [J].
Tomita, Hiroyuki .
QUANTUM INFORMATION AND QUANTUM COMPUTING, 2013, 6 :123-137
[40]   Probabilities of failure for quantum error correction [J].
Scott, A. J. .
QUANTUM INFORMATION PROCESSING, 2005, 4 (05) :399-431