Spike-and-Slab Group Lassos for Grouped Regression and Sparse Generalized Additive Models

被引:22
|
作者
Bai, Ray [1 ]
Moran, Gemma E. [2 ]
Antonelli, Joseph L. [3 ]
Chen, Yong [4 ]
Boland, Mary R. [4 ]
机构
[1] Univ South Carolina, Dept Stat, Columbia, SC 29208 USA
[2] Columbia Univ, Data Sci Inst, New York, NY USA
[3] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[4] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
High-dimensional regression; Interaction detection; Maximum a posteriori estimation; Nonparametric regression; Spike-and-slab lasso; Variable selection; BAYESIAN VARIABLE SELECTION; LINEAR-MODELS; MULTIVARIATE RESPONSES; PREDICTION; ADJUSTMENT;
D O I
10.1080/01621459.2020.1765784
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce the spike-and-slab group lasso (SSGL) for Bayesian estimation and variable selection in linear regression with grouped variables. We further extend the SSGL to sparse generalized additive models (GAMs), thereby introducing the first nonparametric variant of the spike-and-slab lasso methodology. Our model simultaneously performs group selection and estimation, while our fully Bayes treatment of the mixture proportion allows for model complexity control and automatic self-adaptivity to different levels of sparsity. We develop theory to uniquely characterize the global posterior mode under the SSGL and introduce a highly efficient block coordinate ascent algorithm for maximum a posteriori estimation. We further employ de-biasing methods to provide uncertainty quantification of our estimates. Thus, implementation of our model avoids the computational intensiveness of Markov chain Monte Carlo in high dimensions. We derive posterior concentration rates for both grouped linear regression and sparse GAMs when the number of covariates grows at nearly exponential rate with sample size. Finally, we illustrate our methodology through extensive simulations and data analysis.for this article are available online.
引用
收藏
页码:184 / 197
页数:14
相关论文
共 50 条
  • [31] Bayesian inference with spike-and-slab priors for differential item functioning detection in a multiple-group IRT tree model
    Chang, Yu-Wei
    Yang, Cheng-Xin
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (07) : 1416 - 1444
  • [32] Modelling grouped survival times in toxicological studies using Generalized Additive Models
    Candy, S. G.
    Sfiligoj, B. J.
    King, C. K.
    Mondon, J. A.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2015, 22 (03) : 465 - 491
  • [33] Modelling grouped survival times in toxicological studies using Generalized Additive Models
    S. G. Candy
    B. J. Sfiligoj
    C. K. King
    J. A. Mondon
    Environmental and Ecological Statistics, 2015, 22 : 465 - 491
  • [34] Quantile regression via vector generalized additive models
    Yee, TW
    STATISTICS IN MEDICINE, 2004, 23 (14) : 2295 - 2315
  • [35] An Adaptive Bayesian Lasso Approach with Spike-and-Slab Priors to Identify Multiple Linear and Nonlinear Effects in Structural Equation Models
    Brandt, Holger
    Cambria, Jenna
    Kelava, Augustin
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (06) : 946 - 960
  • [36] Efficient estimation of generalized additive nonparametric regression models
    Linton, OB
    ECONOMETRIC THEORY, 2000, 16 (04) : 502 - 523
  • [37] Exploring and Interacting with the Set of Good Sparse Generalized Additive Models
    Zhong, Chudi
    Chen, Zhi
    Liu, Jiachang
    Seltzer, Margo
    Rudin, Cynthia
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [38] A non-negative spike-and-slab lasso generalized linear stacking prediction modeling method for high-dimensional omics data
    Junjie Shen
    Shuo Wang
    Yongfei Dong
    Hao Sun
    Xichao Wang
    Zaixiang Tang
    BMC Bioinformatics, 25
  • [39] A non-negative spike-and-slab lasso generalized linear stacking prediction modeling method for high-dimensional omics data
    Shen, Junjie
    Wang, Shuo
    Dong, Yongfei
    Sun, Hao
    Wang, Xichao
    Tang, Zaixiang
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [40] Group additive regression models for genomic data analysis
    Luan, Yihui
    Li, Hongzhe
    BIOSTATISTICS, 2008, 9 (01) : 100 - 113