Spike-and-Slab Group Lassos for Grouped Regression and Sparse Generalized Additive Models

被引:22
|
作者
Bai, Ray [1 ]
Moran, Gemma E. [2 ]
Antonelli, Joseph L. [3 ]
Chen, Yong [4 ]
Boland, Mary R. [4 ]
机构
[1] Univ South Carolina, Dept Stat, Columbia, SC 29208 USA
[2] Columbia Univ, Data Sci Inst, New York, NY USA
[3] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[4] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
High-dimensional regression; Interaction detection; Maximum a posteriori estimation; Nonparametric regression; Spike-and-slab lasso; Variable selection; BAYESIAN VARIABLE SELECTION; LINEAR-MODELS; MULTIVARIATE RESPONSES; PREDICTION; ADJUSTMENT;
D O I
10.1080/01621459.2020.1765784
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce the spike-and-slab group lasso (SSGL) for Bayesian estimation and variable selection in linear regression with grouped variables. We further extend the SSGL to sparse generalized additive models (GAMs), thereby introducing the first nonparametric variant of the spike-and-slab lasso methodology. Our model simultaneously performs group selection and estimation, while our fully Bayes treatment of the mixture proportion allows for model complexity control and automatic self-adaptivity to different levels of sparsity. We develop theory to uniquely characterize the global posterior mode under the SSGL and introduce a highly efficient block coordinate ascent algorithm for maximum a posteriori estimation. We further employ de-biasing methods to provide uncertainty quantification of our estimates. Thus, implementation of our model avoids the computational intensiveness of Markov chain Monte Carlo in high dimensions. We derive posterior concentration rates for both grouped linear regression and sparse GAMs when the number of covariates grows at nearly exponential rate with sample size. Finally, we illustrate our methodology through extensive simulations and data analysis.for this article are available online.
引用
收藏
页码:184 / 197
页数:14
相关论文
共 50 条
  • [21] Generalized Sparse Additive Models
    Haris, Asad
    Simon, Noah
    Shojaie, Ali
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [22] Incorporating spatial structure into inclusion probabilities for Bayesian variable selection in generalized linear models with the spike-and-slab elastic net
    Leach, Justin M.
    Aban, Inmaculada
    Yi, Nengjun
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 217 : 141 - 152
  • [23] Disjunct support spike-and-slab priors for variable selection in regression under quasi-sparseness
    Andrade, Daniel
    Fukumizu, Kenji
    STAT, 2020, 9 (01):
  • [24] The Spike-and-Slab Lasso regression modeling with compositional covariates: An application on Brazilian children malnutrition data
    Louzada, Francisco
    Shimizu, Taciana K. O.
    Suzuki, Adriano K.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (05) : 1434 - 1446
  • [25] Classification by sparse generalized additive models
    Abramovich, Felix
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (01): : 2021 - 2041
  • [26] A sparse Bayesian approach to model structure selection and parameter estimation of dynamical systems using spike-and-slab priors
    Nayek, R.
    Worden, K.
    Cross, E. J.
    Fuentes, R.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2020) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2020), 2020, : 3639 - 3653
  • [27] Bayesian Image-on-Scalar Regression with a Spatial Global-Lo cal Spike-and-Slab Prior
    Zeng, Zijian
    Li, Meng
    Vannucci, Marina
    BAYESIAN ANALYSIS, 2024, 19 (01): : 235 - 260
  • [28] Generalized additive regression for group testing data
    Liu, Yan
    McMahan, Christopher S.
    Tebbs, Joshua M.
    Gallagher, Colin M.
    Bilder, Christopher R.
    BIOSTATISTICS, 2021, 22 (04) : 873 - 889
  • [29] Fast Sparse Classification for Generalized Linear and Additive Models
    Liu, Jiachang
    Zhong, Chudi
    Seltzer, Margo
    Rudin, Cynthia
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [30] Sparse principal component regression for generalized linear models
    Kawano, Shuichi
    Fujisawa, Hironori
    Takada, Toyoyuki
    Shiroishi, Toshihiko
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 124 : 180 - 196