Spike-and-Slab Group Lassos for Grouped Regression and Sparse Generalized Additive Models

被引:22
|
作者
Bai, Ray [1 ]
Moran, Gemma E. [2 ]
Antonelli, Joseph L. [3 ]
Chen, Yong [4 ]
Boland, Mary R. [4 ]
机构
[1] Univ South Carolina, Dept Stat, Columbia, SC 29208 USA
[2] Columbia Univ, Data Sci Inst, New York, NY USA
[3] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[4] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
High-dimensional regression; Interaction detection; Maximum a posteriori estimation; Nonparametric regression; Spike-and-slab lasso; Variable selection; BAYESIAN VARIABLE SELECTION; LINEAR-MODELS; MULTIVARIATE RESPONSES; PREDICTION; ADJUSTMENT;
D O I
10.1080/01621459.2020.1765784
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce the spike-and-slab group lasso (SSGL) for Bayesian estimation and variable selection in linear regression with grouped variables. We further extend the SSGL to sparse generalized additive models (GAMs), thereby introducing the first nonparametric variant of the spike-and-slab lasso methodology. Our model simultaneously performs group selection and estimation, while our fully Bayes treatment of the mixture proportion allows for model complexity control and automatic self-adaptivity to different levels of sparsity. We develop theory to uniquely characterize the global posterior mode under the SSGL and introduce a highly efficient block coordinate ascent algorithm for maximum a posteriori estimation. We further employ de-biasing methods to provide uncertainty quantification of our estimates. Thus, implementation of our model avoids the computational intensiveness of Markov chain Monte Carlo in high dimensions. We derive posterior concentration rates for both grouped linear regression and sparse GAMs when the number of covariates grows at nearly exponential rate with sample size. Finally, we illustrate our methodology through extensive simulations and data analysis.for this article are available online.
引用
收藏
页码:184 / 197
页数:14
相关论文
共 50 条
  • [1] Spike-and-Slab Priors for Function Selection in Structured Additive Regression Models
    Scheipl, Fabian
    Fahrmeir, Ludwig
    Kneib, Thomas
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) : 1518 - 1532
  • [2] Expectation propagation in linear regression models with spike-and-slab priors
    José Miguel Hernández-Lobato
    Daniel Hernández-Lobato
    Alberto Suárez
    Machine Learning, 2015, 99 : 437 - 487
  • [3] Expectation propagation in linear regression models with spike-and-slab priors
    Miguel Hernandez-Lobato, Jose
    Hernandez-Lobato, Daniel
    Suarez, Alberto
    MACHINE LEARNING, 2015, 99 (03) : 437 - 487
  • [4] Select-and-Sample for Spike-and-Slab Sparse Coding
    Sheikh, Abdul-Saboor
    Luecke, Joerg
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [5] A Truncated EM Approach for Spike-and-Slab Sparse Coding
    Sheikh, Abdul-Saboor
    Shelton, Jacquelyn A.
    Luecke, Joerg
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 2653 - 2687
  • [6] A truncated EM approach for spike-and-slab sparse coding
    Sheikh, Abdul-Saboor, 1600, Microtome Publishing (15):
  • [7] The Spike-and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes Detection
    Tang, Zaixiang
    Shen, Yueping
    Zhang, Xinyan
    Yi, Nengjun
    GENETICS, 2017, 205 (01) : 77 - +
  • [8] The Spike-and-Slab RBM and Extensions to Discrete and Sparse Data Distributions
    Courville, Aaron
    Desjardins, Guillaume
    Bergstra, James
    Bengio, Yoshua
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (09) : 1874 - 1887
  • [9] Nonlinear Spike-And-Slab Sparse Coding for Interpretable Image Encoding
    Shelton, Jacquelyn A.
    Sheikh, Abdul-Saboor
    Bornschein, Joerg
    Sterne, Philip
    Luecke, Joerg
    PLOS ONE, 2015, 10 (05):
  • [10] Learning sparse deep neural networks with a spike-and-slab prior
    Sun, Yan
    Song, Qifan
    Liang, Faming
    STATISTICS & PROBABILITY LETTERS, 2022, 180