Attraction domains of systems with polynomial nonlinearities

被引:3
作者
Barkin, A. I. [1 ]
机构
[1] Russian Acad Sci, Inst Syst Anal, Moscow, Russia
关键词
LYAPUNOV FUNCTIONS;
D O I
10.1134/S0005117915070024
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel method is presented for estimating attraction domains of the zero solution of systems of differential equations with stable linear component and nonlinear components of degrees two and three. A new class of Lyapunov functions is proposed. The efficiency of the approach is illustrated via examples.
引用
收藏
页码:1156 / 1168
页数:13
相关论文
共 8 条
[1]  
Barkin A.I., 2012, ABSOLYUTNAYA USTOICH
[2]  
Barkin A.I., 2013, INFORM TECHNOL VYCHI, P3
[3]  
BARKIN AI, 1992, ABSOLYUTNAYA USTOICH
[4]  
Brockett R. W., 1973, GEOMETRIC METHODS SY, P43, DOI [10.1007/978-94-010-2675-8_2, DOI 10.1007/978-94-010-2675-8_2]
[5]   LMI-based computation of optimal quadratic Lyapunov functions for odd polynomial systems [J].
Chesi, G ;
Garulli, A ;
Tesi, A ;
Vicino, A .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2005, 15 (01) :35-49
[6]  
Kamenetskii V.A., 1994, AUTOMAT REM CONTR, V55, P778
[7]   Region of attraction estimates for polynomial systems [J].
Valmorbida, Giorgio ;
Tarbouriech, Sophie ;
Garcia, Germain .
PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, :5947-5952
[8]   MAXIMAL LYAPUNOV FUNCTIONS AND DOMAINS OF ATTRACTION FOR AUTONOMOUS NONLINEAR-SYSTEMS [J].
VANNELLI, A ;
VIDYASAGAR, M .
AUTOMATICA, 1985, 21 (01) :69-80