The geometry of a parameter space of interacting particle systems

被引:4
作者
Bandt, C
机构
[1] Institut für Mathematik und Informatik,
[2] Arndt-Universität,undefined
关键词
Interacting particle system; duality; thinning;
D O I
10.1023/A:1004614827017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a four-parameter family of interacting particle systems containing the basic voter model and contact processes. Two processes in this family are related by duality or thinning if and only if their parameters belong to the same orbit of a certain one-dimensional group of linear mappings. This shows that many duals exist.
引用
收藏
页码:883 / 906
页数:24
相关论文
共 17 条
[1]  
[Anonymous], MODERN APPROACH PROB
[3]  
BANDT C, 1998, J STAT PHYS, V91
[4]  
BANDT C, UNPUB
[5]  
Durrett R., 1995, Springer Lecture Notes in Mathematics, V1608, P97
[6]   ADDITIVE SET-VALUED MARKOV-PROCESSES AND GRAPHICAL METHODS [J].
HARRIS, TE .
ANNALS OF PROBABILITY, 1978, 6 (03) :355-378
[7]   DUAL PROCESSES AND THEIR APPLICATION TO INFINITE INTERACTING SYSTEMS [J].
HOLLEY, R ;
STROOCK, D .
ADVANCES IN MATHEMATICS, 1979, 32 (02) :149-174
[8]  
LIGGETT T.M., 1985, Interacting particle systems, V276
[9]  
Liggett TM, 1997, ANN PROBAB, V25, P1
[10]  
Peitgen H.-O., 1986, The Beauty of Fractals Images of Complex Dynamical Systems