Volumetric 3D Reconstruction and Parametric Shape Modeling from RGB-D Sequences

被引:1
|
作者
Nakaguro, Yoichi [1 ]
Qureshi, Waqar S. [2 ]
Dailey, Matthew N. [2 ]
Ekpanyapong, Mongkol [2 ]
Bunnun, Pished [1 ]
Tungpimolrut, Kanokvate [1 ]
机构
[1] Natl Elect & Comp Technol Ctr, Klongluang 12120, Pathum Thani, Thailand
[2] Asian Inst Technol, Klongluang 12120, Pathum Thani, Thailand
关键词
Volumetric reconstruction; Parametric shape modeling; Fruit health monitoring; RGB-D sensors;
D O I
10.1007/978-3-319-23231-7_45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The recent availability of low-cost RGB-D sensors and the maturity of machine vision algorithms makes shape-based parametric modeling of 3D objects in natural environments more practical than ever before. In this paper, we investigate the use of RGB-D based modeling of natural objects using RGB-D sensors and a combination of volumetric 3D reconstruction and parametric shape modeling. We apply the general method to the specific case of detecting and modeling quadric objects, with the ellipsoid shape of a pineapple as a special case, in cluttered agricultural environments, towards applications in fruit health monitoring and crop yield prediction. Our method estimates the camera trajectory then performs volumetric reconstruction of the scene. Next, we detect fruit and segment out point clouds that belong to fruit regions. We use two novel methods for robust estimation of a parametric shape model from the dense point cloud: (i) MSAC-based robust fitting of an ellipsoid to the 3D-point cloud, and (ii) nonlinear least squares minimization of dense SIFT (scale invariant feature transform) descriptor distances between fruit pixels in corresponding frames. We compare our shape modeling methods with a baseline direct ellipsoid estimation method. We find that model-based point clouds show a clear advantage in parametric shape modeling and that our parametric shape modeling methods are more robust and better able to estimate the size, shape, and volume of pineapple fruit than is the baseline direct method.
引用
收藏
页码:500 / 516
页数:17
相关论文
共 50 条
  • [1] Comparison of RGB-D sensors for 3D reconstruction
    da Silva Neto, Jose Gomes
    da Lima Silva, Pedro Jorge
    Figueredo, Filipe
    Xavier Natario Teixeira, Joao Marcelo
    Teichrieb, Veronica
    2020 22ND SYMPOSIUM ON VIRTUAL AND AUGMENTED REALITY (SVR 2020), 2020, : 252 - 261
  • [2] Editorial RGB-D Sensors and 3D Reconstruction
    Lv, Zhihan
    Mauri, Jaime Lloret
    Song, Houbing
    IEEE SENSORS JOURNAL, 2020, 20 (20) : 11751 - 11752
  • [3] 3D Reconstruction with Mirrors and RGB-D Cameras
    Akay, Abdullah
    Akgul, Yusuf Sinan
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 3, 2014, : 325 - 334
  • [4] Robust 3D Reconstruction With an RGB-D Camera
    Wang, Kangkan
    Zhang, Guofeng
    Bao, Hujun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (11) : 4893 - 4906
  • [5] Improving 3D Reconstruction Through RGB-D Sensor Noise Modeling
    Maken, Fahira Afzal
    Muthu, Sundaram
    Nguyen, Chuong
    Sun, Changming
    Tong, Jinguang
    Wang, Shan
    Tsuchida, Russell
    Howard, David
    Dunstall, Simon
    Petersson, Lars
    SENSORS, 2025, 25 (03)
  • [6] Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences
    Hesse, Nikolas
    Pujades, Sergi
    Black, Michael J.
    Arens, Michael
    Hofmann, Ulrich G.
    Schroeder, A. Sebastian
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (10) : 2540 - 2551
  • [7] Texture Mapping for 3D Reconstruction with RGB-D Sensor
    Fu, Yanping
    Yan, Qingan
    Yang, Long
    Liao, Jie
    Xiao, Chunxia
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4645 - 4653
  • [8] State of the Art on 3D Reconstruction with RGB-D Cameras
    Zollhoefer, Michael
    Stotko, Patrick
    Goerlitz, Andreas
    Theobalt, Christian
    Niessner, Matthias
    Klein, Reinhard
    Kolb, Andreas
    COMPUTER GRAPHICS FORUM, 2018, 37 (02) : 625 - 652
  • [9] Multi-target 3D Reconstruction from RGB-D Data
    Gao, Yang
    Yao, Yuan
    Jiang, Yunliang
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (CSSE 2019), 2019,
  • [10] Contrastive 3D Shape Completion and Reconstruction for Agricultural Robots Using RGB-D Frames
    Magistri, Federico
    Marks, Elias
    Nagulavancha, Sumanth
    Vizzo, Ignacio
    Laeebe, Thomas
    Behley, Jens
    Halstead, Michael
    McCool, Chris
    Stachniss, Cyrill
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 10120 - 10127