Fixed points of a mapping and Hyers-Ulam stability

被引:6
作者
Badora, Roman [1 ]
Brzdek, Janusz [2 ]
机构
[1] Silesian Univ, Dept Math, PL-40007 Katowice, Poland
[2] Pedag Univ, Dept Math, PL-30084 Krakow, Poland
关键词
Hyers-Ulam stability; Fixed point; Functional equation; Single variable; Nonlinear mapping; FUNCTIONAL-EQUATIONS;
D O I
10.1016/j.jmaa.2013.11.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that many general results on Hyers-Ulam stability of some functional equations in a single variable follow immediately from a simple fixed point theorem. The theorem is formulated for self-maps of some subsets of the space of functions from a nonempty set into the set of reals. We also give some applications of that theorem, e.g., in investigations of solutions of some difference equations and functional inequalities. (C) 2013 Elsevier Inc, All rights reserved;
引用
收藏
页码:450 / 457
页数:8
相关论文
共 46 条
[1]   Stability of functional equations in single variable [J].
Agarwal, RP ;
Xu, B ;
Zhang, WN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 288 (02) :852-869
[2]   Approximate homomorphisms of ternary semigroups [J].
Amyari, M. ;
Moslehian, M. S. .
LETTERS IN MATHEMATICAL PHYSICS, 2006, 77 (01) :1-9
[3]  
[Anonymous], 1998, Stability of Functional Equations in Several Variables
[4]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
[5]   THE STABILITY OF CERTAIN FUNCTIONAL-EQUATIONS [J].
BAKER, JA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (03) :729-732
[6]  
Baron K., 2001, AEQUATIONES MATH, V61, P1, DOI DOI 10.1007/S000100050159
[7]   CLASSES OF TRANSFORMATIONS AND BORDERING TRANSFORMATIONS [J].
BOURGIN, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (04) :223-237
[9]  
Brzdek J., 2009, Aust. J. Math. Anal. Appl., V6
[10]   The Hyers-Ulam stability of nonlinear recurrences [J].
Brzdek, Janusz ;
Popa, Dorian ;
Xu, Bing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) :443-449