Control electronics for semiconductor spin qubits

被引:20
|
作者
Geck, Lotte [1 ]
Kruth, Andre [1 ]
Bluhm, Hendrik [2 ,3 ]
van Waasen, Stefan [1 ,4 ]
Heinen, Stefan [5 ]
机构
[1] Forschungszentrum Julich, Cent Inst ZEA 2, Elect Syst, Julich, Germany
[2] Forschungszentrum Julich, JARA FIT Inst Quantum Informat, D-52074 Aachen, Germany
[3] Rhein Westfal TH Aachen, D-52074 Aachen, Germany
[4] Univ Duisburg Essen, Fac Engn, Commun Syst, Essen, Germany
[5] Rhein Westfal TH Aachen, Chair Integrated Analog Circuits & RF Syst, Aachen, Germany
关键词
quantum computing; electronics; spin qubits; scalability; QUANTUM; LEAKAGE;
D O I
10.1088/2058-9565/ab5e07
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Future universal quantum computers solving problems of practical relevance are expected to require at least 10(6) qubits, which is a massive scale-up from the present numbers of less than 50 qubits operated together. Out of the different types of qubits, solid state qubits are considered to be viable candidates for this scale-up, but interfacing to and controlling such a large number of qubits is a complex challenge that has not been solved yet. One possibility to address this challenge is to use qubit control circuits located close to the qubits at cryogenic temperatures. In this work we evaluate the feasibility of this idea, taking as a reference the physical requirements of a two-electron spin qubit and the specifications of a standard 65 nmcomplementary metal-oxide-semiconductor process. Using principles and flows from electrical systems engineering we provide realistic estimates of the footprint and of the power consumption of a complete control-circuit architecture. Our results show that with further research it is possible to provide scalable electrical control in the vicinity of the qubit, with our concept.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] Semiconductor spin qubits - A scalable platform for quantum computing?
    Bluhm, Hendrik
    Schreiber, Lars R.
    2019 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2019,
  • [12] Spin-orbit mediated control of spin qubits
    Flindt, Christian
    Sorensen, Anders S.
    Flensberg, Karsten
    PHYSICAL REVIEW LETTERS, 2006, 97 (24)
  • [13] Electric dipole spin resonance of two-dimensional semiconductor spin qubits
    Brooks, Matthew
    Burkard, Guido
    PHYSICAL REVIEW B, 2020, 101 (03)
  • [14] CMOS based scalable cryogenic Control Electronics for Qubits
    Degenhardt, C.
    Geck, L.
    Kruth, A.
    Vliex, P.
    van Waasen, S.
    2017 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC), 2017, : 332 - 335
  • [15] New materials for semiconductor spin-electronics
    Von Molnár, S
    Read, D
    PROCEEDINGS OF THE IEEE, 2003, 91 (05) : 715 - 726
  • [16] Depolarization of Electronic Spin Qubits Confined in Semiconductor Quantum Dots
    Cogan, Dan
    Kenneth, Oded
    Lindner, Netanel H.
    Peniakov, Giora
    Hopfmann, Caspar
    Dalacu, Dan
    Poole, Philip J.
    Hawrylak, Pawel
    Gershoni, David
    PHYSICAL REVIEW X, 2018, 8 (04):
  • [17] Single-spin readout for buried dopant semiconductor qubits
    Hollenberg, LCL
    Wellard, CJ
    Pakes, CI
    Fowler, AG
    PHYSICAL REVIEW B, 2004, 69 (23) : 233301 - 1
  • [18] Optically controlled semiconductor spin qubits for quantum information processing
    Yamamoto, Y.
    Ladd, T. D.
    Press, D.
    Clark, S.
    Sanaka, K.
    Santori, C.
    Fattal, D.
    Fu, K. M.
    Hoefling, S.
    Reitzenstein, S.
    Forchel, A.
    PHYSICA SCRIPTA, 2009, T137
  • [19] Semiconductor few-electron quantum dots as spin qubits
    Elzerman, JM
    Hanson, R
    van Beveren, LHW
    Tarucha, S
    Vandersypen, LMK
    Kouwenhoven, LP
    QUANTUM DOTS: A DOORWAY TO NANOSCALE PHYSICS, 2005, 667 : 25 - 95
  • [20] Dynamics of two coupled semiconductor spin qubits in a noisy environment
    Das Sarma, S.
    Throckmorton, Robert E.
    Wu, Yang-Le
    PHYSICAL REVIEW B, 2016, 94 (04)