Arc Plasma Synthesis of Nanostructured Materials: Techniques and Innovations

被引:0
作者
Das, A. K. [1 ]
Bhoraskar, S. V. [2 ]
Kakati, M. [3 ]
Karmakar, Soumen
机构
[1] Bhabha Atom Res Ctr, Div Laser & Plasma Technol, Bombay 400085, Maharashtra, India
[2] Univ Poona, Dept Phys, Pune 411007, Maharashtra, India
[3] Ctr Plasma Phys, Sonapur 782402, India
来源
MESOSCOPIC, NANOSCOPIC, AND MACROSCOPIC MATERIALS | 2008年 / 1063卷
关键词
Thermal plasma; nano crystalline material; size control; morphology control; phase control;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Arc plasma aided synthesis of nanostructured materials has the potential of producing complex nano phase structures in bulk quantities. Successful implementation of this potential capability to industrial scale nano generation needs establishment of a plasma parameter control regime in terms of plasma gas, flow pattern, pressure, local temperature and the plasma fields to obtain the desired nano phase structures. However, there is a need to design innovative in situ experiments for generation of an extensive database and subsequently to correlate plasma parameters to the size, shape and phase of the generated nanostructures. The present paper reviews the various approaches utilized in the field of arc plasma nano synthesis in general and in the authors' laboratories in particular. Simple plasma diagnostics and monitoring schemes have been used in conjunction with nano materials characterization tools to explore the possibility of controlling the size, shape, yield and phase composition of the arc generated nanostructures through plasma control. Case studies related to synthesis of AIN, Al2O3, TiO2, ZrO2, ZnO), magnetic (e.g. gamma-Fe2O3, Fe3O4) and single elemental materials (e.g. carbon nanotubes) are presented.
引用
收藏
页码:159 / +
页数:4
相关论文
共 44 条
[1]   Mathematical modeling of silica anode decomposition [J].
Addona, T ;
Proulx, P ;
Munz, RJ .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2000, 20 (04) :521-553
[2]   Silica decomposition using a transferred arc process [J].
Addona, T ;
Munz, RJ .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1999, 38 (06) :2299-2309
[3]  
AGUILERA L, 2003, P ISPB, V16
[4]   High-purity carbon nanotubes synthesis method by an arc discharging in magnetic field [J].
Anazawa, K ;
Shimotani, K ;
Manabe, C ;
Watanabe, H ;
Shimizu, M .
APPLIED PHYSICS LETTERS, 2002, 81 (04) :739-741
[5]   Mass production of single-wall carbon nanotubes by the arc plasma jet method [J].
Ando, Y ;
Zhao, X ;
Hirahara, K ;
Suenaga, K ;
Bandow, S ;
Iijima, S .
CHEMICAL PHYSICS LETTERS, 2000, 323 (5-6) :580-585
[6]  
ARISTIZABAL F, 2003, P ISPB, V16
[7]   Synthesis of nanowires and nanoparticles of cubic aluminium nitride [J].
Balasubramanian, C ;
Godbole, VP ;
Rohatgi, VK ;
Das, AK ;
Bhoraskar, SV .
NANOTECHNOLOGY, 2004, 15 (03) :370-373
[8]  
BANERJEE I, 2006, POWER BEAMS CLEAN EN, P245
[9]  
BANERJEE I, 2008, COMMUNICATION
[10]   In situ optical emission spectroscopic investigations during arc plasma synthesis of iron oxide nanoparticles by thermal plasma [J].
Banerjee, Indrani ;
Joshi, N. K. ;
Sahasrabudhe, S. N. ;
Kulkarni, Naveen V. ;
Karmakar, Soumen ;
Pasricha, R. ;
Ghorui, S. ;
Tak, Atul K. ;
Murthy, Shri P. S. S. ;
Bhoraskar, S. V. ;
Das, A. K. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2006, 34 (04) :1175-1182