FAR-FIELD REGULARITY FOR THE SUPERCRITICAL QUASI-GEOSTROPHIC EQUATION

被引:0
作者
Kukavica, Igor [1 ]
Wang, Fei [2 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Univ Maryland, Dept Math, 4176 Campus Dr, College Pk, MD 20742 USA
关键词
quasi-geostrophic equation; eventual regularity; supercritical; weighted decay; NAVIER-STOKES EQUATIONS; GLOBAL WELL-POSEDNESS; NONLINEAR SPECTRAL MANIFOLDS; WEAK SOLUTIONS; ASYMPTOTIC-BEHAVIOR; MAXIMUM-PRINCIPLES; L2; DECAY; FLOWS;
D O I
10.4310/CMS.2018.v16.n2.a4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the far field regularity for solutions of the surface quasi-geostrophic equation thetat + u.del theta + A(2 alpha)theta = 0 u = R-inverted perpendicular&theta = (-R2theta,R1theta) in the supercritical range 0 < alpha < 1/2 with alpha sufficiently close to 1/2. We prove that if the datum is sufficiently regular, then the set of space-time singularities is compact in R-2 x R. The proof depends on a new spatial decay result on solutions in the supercritical range.
引用
收藏
页码:393 / 410
页数:18
相关论文
共 41 条
[1]  
[Anonymous], 1995, DYNAMICAL PROBLEMS N
[2]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[3]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[4]  
Caffarelli LA, 2010, ANN MATH, V171, P1903
[5]   Global well-posedness in the super-critical dissipative quasi-geostrophic equations [J].
Chae, D ;
Lee, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 233 (02) :297-311
[6]   On the critical dissipative quasi-geostrophic equation [J].
Constantin, P ;
Cordoba, D ;
Wu, JH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 :97-107
[7]   Behavior of solutions of 2D quasi-geostrophic equations [J].
Constantin, P ;
Wu, JH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (05) :937-948
[8]   Long Time Dynamics of Forced Critical SQG [J].
Constantin, Peter ;
Tarfulea, Andrei ;
Vicol, Vlad .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 335 (01) :93-141
[9]   Nonlinear maximum principles for dissipative linear nonlocal operators and applications [J].
Constantin, Peter ;
Vicol, Vlad .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (05) :1289-1321
[10]   Regularity of Holder continuous solutions of the supercritical quasi-geostrophic equation [J].
Constantin, Peter ;
Wu, Jiahong .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (06) :1103-1110