Electrochemical oxidation of dichlorvos on SnO2-Sb2O5 electrodes

被引:29
|
作者
Vargas, Ronald [1 ]
Diaz, Stephanie [1 ,2 ]
Viele, Lucianna [2 ]
Nunez, Oswaldo [2 ]
Borras, Carlos [1 ]
Mostany, Jorge [1 ]
Scharifker, Benjamin R. [1 ,3 ]
机构
[1] Univ Simon Bolivar, Dept Quim, Lab Electroquim, Caracas 1080A, Venezuela
[2] Univ Simon Bolivar, Dept Proc & Sistemas, Lab Fisicoquim Organ & Quim Ambiental, Caracas 1080A, Venezuela
[3] Univ Metropolitana, Caracas 1070A, Venezuela
关键词
Electrocatalysis; Dichlorvos (2,2-dichlorovinyl dimethyl phosphate); Metal oxide electrode; Langmuir-Hinshelwood kinetics; Advanced oxidation process; WASTE-WATER TREATMENT; HIGH OVERVOLTAGE ANODES; PHOTOCATALYTIC DEGRADATION; ORGANIC POLLUTANTS; TITANIUM-DIOXIDE; P-METHOXYPHENOL; KINETICS; TIO2; MINERALIZATION; DECOMPOSITION;
D O I
10.1016/j.apcatb.2013.06.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effects of electrode potential and the initial concentration of 2,2-dichlorovinyl dimethyl phosphate (dichlorvos, DDVP) on its oxidation/mineralization reaction kinetics, using an electrochemical oxidation system based on SnO2-Sb2O5 anodes, have been studied. Electrochemical degradation followed the Langmuir-Hinshelwood mechanism, with adsorption equilibrium constant K = 0.082 L mg(-1) of dichlorvos on the electrode material surface, and reaction rate constant k = 0.021 mg L-1 s(-1) of the organic compound-electrocatalyst adduct. Chemical oxygen demand and CO2 measurements in neutral media suggest that the rate limiting step for mineralization is the same as for the electrochemical oxidation. The results show that the electrochemical mineralization of dichlorvos was readily possible at potentials more positive than 2.5 V vs. SCE, with lower reaction half-lives than obtained with other advanced oxidation process. The fastest overall degradation rate constants were obtained at limiting low concentrations of dichlorvos in aqueous solution, k(obs) = kK = 0.0017 s(-1). (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 111
页数:5
相关论文
共 50 条
  • [1] Comparison of Ti/BDD and Ti/SnO2-Sb2O5 electrodes for pollutant oxidation
    Chen, XM
    Gao, FR
    Chen, GH
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2005, 35 (02) : 185 - 191
  • [2] Comparison of Ti/BDD and Ti/SnO2-Sb2O5 electrodes for pollutant oxidation
    Chen, G. (kechengh@ust.hk), 1600, Springer Netherlands (35):
  • [3] ELECTROCHEMICAL STUDY OF AN SNO2-SB2O5 SEMICONDUCTING GLAZE
    ORSINI, PG
    PERNICE, P
    EGIZIANO, L
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (07) : 1451 - 1456
  • [4] Electrochemical properties of Ti/SnO2-Sb2O5 electrodes prepared by the spray pyrolysis technique
    CorreaLozano, B
    Comninellis, C
    DeBattisti, A
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 1996, 26 (07) : 683 - 688
  • [5] Electrochemical properties of Ti/SnO2-Sb2O5 electrodes prepared by the spray pyrolysis technique
    Correa-Lozano, B.
    Comninellis, Ch.
    De Battisti, A.
    1996, Chapman & Hall Ltd, London, United Kingdom (26)
  • [6] Preparation and properties of Ti/SnO2-Sb2O5 electrodes by electrodeposition
    Ding, Hai-yang
    Feng, Yu-jie
    Liu, Jun-feng
    MATERIALS LETTERS, 2007, 61 (27) : 4920 - 4923
  • [7] Electrochemical oxidation of p-chlorophenol on SnO2-Sb2O5 based anodes for wastewater treatment
    Zanta, CLPS
    Michaud, PA
    Comninellis, C
    De Andrade, AR
    Boodts, JFC
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2003, 33 (12) : 1211 - 1215
  • [8] Influence of a nanoscale gold thin layer on Ti/SnO2-Sb2O5 electrodes
    Chen, AC
    Nigro, S
    JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (48): : 13341 - 13348
  • [9] Optimization of Ti/SnO2-Sb2O5 anode preparation for electrochemical oxidation of organic contaminants in water and wastewater
    Watts, Richard J.
    Wyeth, Megan S.
    Finn, Dennis D.
    Teel, Amy L.
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2008, 38 (01) : 31 - 37
  • [10] Use of Ti/IrO2/SnO2-Sb2O5 electrodes for ozone production
    Beaufils, Y
    Bowen, P
    Wenzel, C
    Comninellis, C
    ENERGY AND ELECTROCHEMICAL PROCESSING FOR A CLEANER ENVIRONMENT, 1998, 97 (28): : 171 - 186