On Vlasov-Manev equations .1. Foundations, properties, and nonglobal existence

被引:19
作者
Bobylev, AV [1 ]
Dukes, P [1 ]
Illner, R [1 ]
Victory, HD [1 ]
机构
[1] TEXAS TECH UNIV,DEPT MATH,LUBBOCK,TX 79409
关键词
Vlasov-Poisson equations; Manev correction;
D O I
10.1023/B:JOSS.0000015177.60491.3c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the classical stellar dynamic (Vlasov) equation with a so-called Manev correction (based on a pair potential gamma/r + epsilon/r(2)). For the pure Manev potential gamma = 0 we discuss both the continuous case and the N-body problem and show that global solutions will not exist if the initial energy is negative. Certain global solutions can be constructed from local ones by a transformation which is peculiar for the epsilon/r(2) law. Moreover, scaling arguments are used to show that Boltzmann collision terms are meaningful in conjunction with Manev force terms. In an appendix, a formal justification of the Manev correction based on the quasirelativistic Lagrangian formalism for the motion of a particle in a central force field is given.
引用
收藏
页码:885 / 911
页数:27
相关论文
共 19 条
[1]  
Bobylev A. V., 1993, MATH MODELING COMPUT, V1, P291
[2]  
CERCIGNANI C, 1988, THEORY APPLICATION B
[3]  
DIACU FN, 1995, WORLD SCI SERIES APP, V4, P213
[4]   ON SYMMETRIC-SOLUTIONS OF THE RELATIVISTIC VLASOV-POISSON SYSTEM [J].
GLASSEY, RT ;
SCHAEFFER, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 101 (04) :459-473
[5]  
Glassey RT., 1996, CAUCHY PROBLEM KINET, DOI 10.1137/1.9781611971477
[6]  
Horst E., 1982, MATH METHOD APPL SCI, V4, P19, DOI 10.1002/mma.1670040104
[7]  
Horst E., 1981, Mathematical Methods in the Applied Sciences, V3, P229, DOI 10.1002/mma.1670030117
[8]   COMPACTNESS IN BOLTZMANN-EQUATION VIA FOURIER INTEGRAL-OPERATORS AND APPLICATIONS .3. [J].
LIONS, PL .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1994, 34 (03) :539-584
[9]   PROPAGATION OF MOMENTS AND REGULARITY FOR THE 3-DIMENSIONAL VLASOV-POISSON SYSTEM [J].
LIONS, PL ;
PERTHAME, B .
INVENTIONES MATHEMATICAE, 1991, 105 (02) :415-430
[10]  
Maneff G, 1924, CR HEBD ACAD SCI, V178, P2159