Artificial intelligence-based modelling and multi-objective optimization of friction stir welding of dissimilar AA5083-O and AA6063-T6 aluminium alloys

被引:37
作者
Gupta, Saurabh Kumar [1 ]
Pandey, K. N. [1 ]
Kumar, Rajneesh [2 ]
机构
[1] MNNIT Allahabad, Dept Mech Engn, Allahabad 211004, Uttar Pradesh, India
[2] CSIR Natl Met Lab, Div Engn, Jamshedpur, Bihar, India
关键词
Friction stir welding; aluminium alloys; Taguchi method; artificial neural network; genetic algorithm; GENETIC ALGORITHM; TENSILE-STRENGTH; PROCESS PARAMETERS; NEURAL-NETWORK; PIN PROFILE; JOINTS; TOOL; COMPOSITES; GEOMETRY;
D O I
10.1177/1464420715627293
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present research investigates the application of artificial intelligence tool for modelling and multi-objective optimization of friction stir welding parameters of dissimilar AA5083-O-AA6063-T6 aluminium alloys. The experiments have been conducted according to a well-designed L-27 orthogonal array. The experimental results obtained from L-27 experiments were used for developing artificial neural network-based mathematical models for tensile strength, microhardness and grain size. A hybrid approach consisting of artificial neural network and genetic algorithm has been used for multi-objective optimization. The developed artificial neural network-based models for tensile strength, microhardness and grain size have been found adequate and reliable with average percentage prediction errors of 0.053714, 0.182092 and 0.006283%, respectively. The confirmation results at optimum parameters showed considerable improvement in the performance of each response.
引用
收藏
页码:333 / 342
页数:10
相关论文
共 33 条
[1]  
[Anonymous], 2006, E8M04 ASTM INT
[2]   Thermo-mechanical and microstructural issues in dissimilar friction stir welding of AA5086-AA6061 [J].
Aval, H. Jamshidi ;
Serajzadeh, S. ;
Kokabi, A. H. .
JOURNAL OF MATERIALS SCIENCE, 2011, 46 (10) :3258-3268
[3]   Friction stir processing: A tool to homogenize nanocomposite aluminum alloys [J].
Berbon, PB ;
Bingel, WH ;
Mishra, RS ;
Bampton, CC ;
Mahoney, MW .
SCRIPTA MATERIALIA, 2001, 44 (01) :61-66
[4]  
Correia D. S., 2004, J. Braz. Soc. Mech. Sci. & Eng., V26, P28, DOI 10.1590/S1678-58782004000100005
[5]   Optimization of bead geometry in electron beam welding using a Genetic Algorithm [J].
Dey, Vidyut ;
Pratihar, Dilip Kumar ;
Datta, G. L. ;
Jha, M. N. ;
Saha, T. K. ;
Bapat, A. V. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2009, 209 (03) :1151-1157
[6]   Using a neural network for predicting the average grain size in friction stir welding processes [J].
Fratini, Livan ;
Buffa, Gianluca ;
Palmeri, Dina .
COMPUTERS & STRUCTURES, 2009, 87 (17-18) :1166-1174
[7]   Mechanical, fatigue and microstructural properties of friction stir welded 5083-H111 and 6082-T651 aluminum alloys [J].
Gungor, Beytullah ;
Kaluc, Erdinc ;
Taban, Emel ;
Sik, Aydin .
MATERIALS & DESIGN, 2014, 56 :84-90
[8]   Effect of Pin Profile on Friction Stir Welded Aluminum Matrix Composites [J].
Hassan, Adel Mahmood ;
Qasim, Tarek ;
Ghaithan, Ahmed .
MATERIALS AND MANUFACTURING PROCESSES, 2012, 27 (12) :1397-1401
[9]   Recent development in aluminium alloys for aerospace applications [J].
Heinz, A ;
Haszler, A ;
Keidel, C ;
Moldenhauer, S ;
Benedictus, R ;
Miller, WS .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 280 (01) :102-107
[10]   Application of robust prediction for a laser-GMA hybrid welding process and parameter optimization of 6061-T6 aluminium alloy [J].
Jang, I. ;
Lee, K. Y. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2010, 224 (B11) :1671-1678