Safe Approximations of Ambiguous Chance Constraints Using Historical Data

被引:29
作者
Yanikoglu, Ihsan [1 ]
den Hertog, Dick [1 ]
机构
[1] Tilburg Univ, Dept Econometr & Operat Res, NL-5000 LE Tilburg, Netherlands
关键词
robust optimization; chance constraint; phi-divergence; goodness-of-fit statistics; RANDOMIZED SOLUTIONS; ROBUST OPTIMIZATION;
D O I
10.1287/ijoc.1120.0529
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper proposes a new way to construct uncertainty sets for robust optimization. Our approach uses the 1 available historical data for the uncertain parameters and is based on goodness-of-fit statistics. It guarantees that the probability the uncertain constraint holds is at least the prescribed value. Compared to existing safe approximation methods for chance constraints, our approach directly uses the historical data information and leads to tighter uncertainty sets and therefore to better objective values. This improvement is significant, especially when the number of uncertain parameters is low. Other advantages of our approach are that it can handle joint chance constraints easily, it can deal with uncertain parameters that are dependent, and it can be extended to nonlinear inequalities. Several numerical examples illustrate the validity of our approach.
引用
收藏
页码:666 / 681
页数:16
相关论文
共 44 条
  • [1] [Anonymous], 2013, Stochastic Programming
  • [2] Bemis C, 2009, IMA PREPRINT SERIES, V2284
  • [3] Robust solutions of Linear Programming problems contaminated with uncertain data
    Ben-Tal, A
    Nemirovski, A
    [J]. MATHEMATICAL PROGRAMMING, 2000, 88 (03) : 411 - 424
  • [4] Robust optimization - methodology and applications
    Ben-Tal, A
    Nemirovski, A
    [J]. MATHEMATICAL PROGRAMMING, 2002, 92 (03) : 453 - 480
  • [5] Ben-Tal A, 2011, CENTER DISCUSSION PA
  • [6] Deriving robust counterparts of nonlinear uncertain inequalities
    Ben-Tal, Aharon
    den Hertog, Dick
    Vial, Jean-Philippe
    [J]. MATHEMATICAL PROGRAMMING, 2015, 149 (1-2) : 265 - 299
  • [7] On Safe Tractable Approximations of Chance-Constrained Linear Matrix Inequalities
    Ben-Tal, Aharon
    Nemirovski, Arkadi
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2009, 34 (01) : 1 - 25
  • [8] BenTal A, 2009, PRINC SER APPL MATH, P1
  • [9] BIRGE JR, 1986, MATH PROGRAM STUD, V27, P54, DOI 10.1007/BFb0121114
  • [10] Burkauskas A., 1986, ALKALMAZOTT MATEMATI, V12, P77