Translating DPYD genotype into DPD phenotype: using the DPYD gene activity score

被引:85
作者
Henricks, Linda M. [1 ,2 ]
Lunenburg, Carin A. T. C. [3 ]
Meulendijks, Didier [1 ,2 ]
Gelderblom, Hans [3 ]
Cats, Annemieke [4 ]
Swen, Jesse J. [5 ]
Schellens, Jan H. M. [1 ,2 ,6 ]
Guchelaar, Henk-Jan [5 ]
机构
[1] Netherlands Canc Inst, Dept Med Oncol, Div Clin Pharmacol, Amsterdam, Netherlands
[2] Netherlands Canc Inst, Dept Mol Pathol, Amsterdam, Netherlands
[3] Leiden Univ, Med Ctr, Dept Med Oncol, NL-2300 RC Leiden, Netherlands
[4] Netherlands Canc Inst, Dept Gastroenterol & Hepatol, Amsterdam, Netherlands
[5] Leiden Univ, Med Ctr, Dept Clin Pharm & Toxicol, NL-2300 RC Leiden, Netherlands
[6] Univ Utrecht, Fac Sci, Dept Pharmaceut Sci, Div Pharmacoepidemiol & Clin Pharmacol, Utrecht, Netherlands
关键词
capecitabine; dihydropyrimidine dehydrogenase; DPYD; 5-fluorouracil; fluoropyrimidines; gene activity score; individualized medicine; pharmacogenomics; DIHYDROPYRIMIDINE DEHYDROGENASE GENE; SINGLE NUCLEOTIDE POLYMORPHISMS; COLORECTAL-CANCER PATIENTS; SPLICE DONOR SITE; IVS14+1G-GREATER-THAN-A MUTATION; 5-FLUOROURACIL TOXICITY; POINT MUTATION; DIHYDROURACIL/URACIL RATIO; FLUOROPYRIMIDINE TOXICITY; THYMIDYLATE-SYNTHASE;
D O I
10.2217/pgs.15.70
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The dihydropyrimidine dehydrogenase enzyme (DPD, encoded by the gene DPYD) plays a key role in the metabolism of fluoropyrimidines. DPD deficiency occurs in 4-5% of the population and is associated with severe fluoropyrimidine-related toxicity. Several SNPs in DPYD have been described that lead to absent or reduced enzyme activity, including DPYD*2A, DPYD*13, c.2846A>T and c.1236G>A/haplotype B3. Since these SNPs differ in their effect on DPD enzyme activity, a differentiated dose adaption is recommended. We propose the gene activity score for translating DPYD genotype into phenotype, accounting for differences in functionality of SNPs. This method can be used to standardize individualized fluoropyrimidine dose adjustments, resulting in optimal safety and effectiveness.
引用
收藏
页码:1275 / 1284
页数:10
相关论文
共 61 条
[1]  
Amstutz U, 2011, PHARMACOGENOMICS, V12, P1321, DOI [10.2217/PGS.11.72, 10.2217/pgs.11.72]
[2]  
Amstutz U, 2009, PHARMACOGENOMICS, V10, P931, DOI [10.2217/pgs.09.28, 10.2217/PGS.09.28]
[3]   The dihydrouracil/uracil ratio in plasma, clinical and genetic analysis for screening of dihydropyrimidine dehydrogenase deficiency in colorectal cancer patients treated with 5-fluorouracil [J].
Ben Fredj, R. ;
Gross, E. ;
Ben Ahmed, S. ;
Hassine, H. ;
Saguem, S. .
PATHOLOGIE BIOLOGIE, 2009, 57 (06) :470-476
[4]   5-fluorouracil-related severe toxicity: A comparison of different methods for the pretherapeutic detection of dihydropyrimidine dehydrogenase deficiency [J].
Boisdron-Celle, M. ;
Remaud, G. ;
Traore, S. ;
Poirier, A. L. ;
Gamelin, L. ;
Morel, A. ;
Gamelin, E. .
CANCER LETTERS, 2007, 249 (02) :271-282
[5]  
Boisdron-Celle M, 2013, 8 C PHYS PHARM THER
[6]  
Boisdron-Celle M, 2013, 2013 ASCO ANN M CHIC
[7]   Clinical Pharmacogenetics Implementation Consortium Guidelines for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing [J].
Caudle, K. E. ;
Thorn, C. F. ;
Klein, T. E. ;
Swen, J. J. ;
McLeod, H. L. ;
Diasio, R. B. ;
Schwab, M. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2013, 94 (06) :640-645
[8]   Known variant DPYD alleles do not explain DPD deficiency in cancer patients [J].
Collie-Duguid, ESR ;
Etienne, MC ;
Milano, G ;
McLeod, HL .
PHARMACOGENETICS, 2000, 10 (03) :217-223
[9]   Safety, pharmacokinetics (PK), and cost-effectiveness of upfront genotyping of DPYD in fluoropyrimidine therapy [J].
Deenen, M. J. ;
Cats, A. ;
Sechterberger, M. K. ;
Severens, J. L. ;
Smits, P. H. M. ;
Bakker, R. ;
Mandigers, C. M. ;
Soesan, M. ;
Beijnen, J. H. ;
Schellens, J. H. M. .
JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (15)
[10]  
Deenen Maarten J, 2012, Ned Tijdschr Geneeskd, V156, pA4934