Calcium regulation of sodium hypersensitivities of sos3 and athkt1 mutants

被引:64
作者
Horie, Tomoaki
Horie, Rie
Chan, Wai-Yin
Leung, Ho-Yin
Schroeder, Julian I.
机构
[1] Univ Calif San Diego, Div Biol Sci, Cell & Dev Biol Sect, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Ctr Genet Mol, La Jolla, CA 92093 USA
关键词
Arabidopsis thaliana; HKT/Trk/Ktr transporter; Na+ sensitivity; Na+ transport; salinity;
D O I
10.1093/pcp/pcj029
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
T-DNA disruption mutations in the AtHKT1 gene have previously been shown to suppress the salt sensitivity of the sos3 mutant. However, both sos3 and athkt1 single mutants show sodium (Na+) hypersensitivity. In the present study we further analyzed the underlying mechanisms for these nonadditive and counteracting Na+ sensitivities by characterizing athkt1-1 sos3 and athkt1-2 sos3 double mutant plants. Unexpectedly, mature double mutant plants grown in soil clearly showed an increased Na+ hypersensitivity compared with wild-type plants when plants were subjected to salinity stress. The salt sensitive phenotype of athkt1 sos3 double mutant plants was similar to that of athkt1 plants, which showed chlorosis in leaves and stems. The Na+ content in xylem sap samples of soil-grown athkt1 sos3 double and athkt1 single mutant plants showed dramatic Na+ over-accumulation in response to salinity stress. Salinity stress analyses using basic minimal nutrient medium and Murashige-Skoog (MS) medium revealed that athkt1 sos3 double mutant plants show a more athkt1 single mutant-like phenotype in the presence of 3 mM external Ca2+, but show a more sos3 single mutant-like phenotype in the presence of 1 mM external Ca2+. Taken together multiple analyses demonstrate that the external Ca2+ concentration strongly impacts the Na+ stress response of athkt1 sos3 double mutants. Furthermore, the presented findings show that SOS3 and AtHKT1 are physiologically distinct major determinants of salinity resistance such that sos3 more strongly causes Na+ overaccumulation in roots, whereas athkt1 causes an increase in Na+ levels in the xylem sap and shoots and a concomitant Na+ reduction in roots.
引用
收藏
页码:622 / 633
页数:12
相关论文
共 71 条
[1]   Expression of KT/KUP genes in arabidopsis and the role of root hairs in K+ uptake [J].
Ahn, SJ ;
Shin, R ;
Schachtman, DP .
PLANT PHYSIOLOGY, 2004, 134 (03) :1135-1145
[2]   Multiple inward channels provide flexibility in Na+/K+ discrimination at the plasma membrane of barley suspension culture cells [J].
Amtmann, A ;
Laurie, S ;
Leigh, R ;
Sanders, D .
JOURNAL OF EXPERIMENTAL BOTANY, 1997, 48 :481-497
[3]   Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis [J].
Apse, MP ;
Aharon, GS ;
Snedden, WA ;
Blumwald, E .
SCIENCE, 1999, 285 (5431) :1256-1258
[4]   Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance [J].
Berthomieu, P ;
Conéjéro, G ;
Nublat, A ;
Brackenbury, WJ ;
Lambert, C ;
Savio, C ;
Uozumi, N ;
Oiki, S ;
Yamada, K ;
Cellier, F ;
Gosti, F ;
Simonneau, T ;
Essah, PA ;
Tester, M ;
Véry, AA ;
Sentenac, H ;
Casse, F .
EMBO JOURNAL, 2003, 22 (09) :2004-2014
[5]   NA+/H+ ANTIPORT IN ISOLATED TONOPLAST VESICLES FROM STORAGE TISSUE OF BETA-VULGARIS [J].
BLUMWALD, E ;
POOLE, RJ .
PLANT PHYSIOLOGY, 1985, 78 (01) :163-167
[6]   Enhancement of Na+ uptake currents, time-dependent inward-rectifying K+ channel currents, and K+ channel transcripts by K+ starvation in wheat root cells [J].
Buschmann, PH ;
Vaidyanathan, R ;
Gassmann, W ;
Schroeder, JI .
PLANT PHYSIOLOGY, 2000, 122 (04) :1387-1397
[7]   A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat [J].
Davenport, RJ ;
Tester, M .
PLANT PHYSIOLOGY, 2000, 122 (03) :823-834
[8]   Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis [J].
Deeken, R ;
Geiger, D ;
Fromm, J ;
Koroleva, O ;
Ache, P ;
Langenfeld-Heyser, R ;
Sauer, N ;
May, ST ;
Hedrich, R .
PLANTA, 2002, 216 (02) :334-344
[9]   Site directed mutagenesis reduces the Na+ affinity of HKT1, an Na+ energized high affinity K+ transporter [J].
Diatloff, E ;
Kumar, R ;
Schachtman, DP .
FEBS LETTERS, 1998, 432 (1-2) :31-36
[10]   ESSENTIAL ROLE OF CALCIUM IN SELECTIVE CATION TRANSPORT BY PLANT CELLS [J].
EPSTEIN, E .
PLANT PHYSIOLOGY, 1961, 36 (04) :437-&