Electrochemical impedance spectroscopy (EIS), potentiodynamic polarization techniques and an equivalent circuit analysis are used to evaluate the electrochemical corrosion behavior of Sn-Cu alloy samples in a naturally aerated 0.5 M NaCl solution at 25 degrees C It has been found that a better electrochemical corrosion resistance is provided by a coarser cellular microstructure array. It has also been found that the corrosion current density (i(corr)) is of about a quarter when compared with that of the finest microstructure examined. Such behavior is attributed to both localized strains between the Sn-rich phase and intermetallic (IMC) particles and the cathode/anode area ratios. The effect of copper alloying on i(corr), is also discussed. (C) 2013 Elsevier Ltd. All rights reserved.