Thermal form factors of the X X Z chain and the large-distance asymptotics of its temperature dependent correlation functions

被引:41
作者
Dugave, Maxime [1 ]
Goehmann, Frank [1 ]
Kozlowski, Karol K. [2 ]
机构
[1] Berg Univ Wuppertal, Fachbereich Phys C, D-42097 Wuppertal, Germany
[2] Univ Bourgogne, CNRS, UMR 5584, IMB, F-21004 Dijon, France
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2013年
关键词
correlation functions; form factors; integrable spin chains (vertex models); thermodynamic Bethe ansatz; SPIN-1/2 HEISENBERG CHAIN; XXZ CHAIN; FINITE-TEMPERATURE; CORRELATION LENGTH; CRITICAL EXPONENTS; MAGNETIC-FIELD; QUANTUM CHAINS; FREE-ENERGY; MODELS; MATRIX;
D O I
10.1088/1742-5468/2013/07/P07010
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We derive expressions for the form factors of the quantum transfer matrix of the spin-1/2 X X Z chain which are suitable for taking the infinite Trotter number limit. These form factors determine the finitely many amplitudes in the leading asymptotics of the finite-temperature correlation functions of the model. We consider form factor expansions of the longitudinal and transversal two-point functions. Remarkably, the formulae for the amplitudes are in both cases of the same form. We also explain how to adapt our formulae to the description of ground-state correlation functions of the finite chain. The usefulness of our novel formulae is demonstrated by working out explicit results in the high- and low-temperature limits. We obtain, in particular, the large-distance asymptotics of the longitudinal two-point functions for small temperatures by summing up the asymptotically most relevant terms in the form factor expansion of a generating function of the longitudinal correlation functions. As expected, the leading term in the expansion of the corresponding two-point functions is in accordance with conformal field theory predictions. Here it is obtained for the first time by a direct calculation.
引用
收藏
页数:52
相关论文
共 56 条
[51]   TRANSFER-MATRIX METHOD AND MONTE-CARLO SIMULATION IN QUANTUM SPIN SYSTEMS [J].
SUZUKI, M .
PHYSICAL REVIEW B, 1985, 31 (05) :2957-2965
[52]   THE ST-TRANSFORMATION APPROACH TO ANALYTIC SOLUTIONS OF QUANTUM-SYSTEMS .1. GENERAL FORMULATIONS AND BASIC LIMIT-THEOREMS [J].
SUZUKI, M ;
INOUE, M .
PROGRESS OF THEORETICAL PHYSICS, 1987, 78 (04) :787-799
[53]   CORRELATION LENGTH AND FREE-ENERGY OF THE S=1/2 XYZ CHAIN [J].
TAKAHASHI, M .
PHYSICAL REVIEW B, 1991, 43 (07) :5788-5797
[54]   Short-distance thermal correlations in the massive XXZ chain [J].
Trippe, C. ;
Goehmann, F. ;
Kluemper, A. .
EUROPEAN PHYSICAL JOURNAL B, 2010, 73 (02) :253-264
[55]   High temperature expansion of the emptiness formation probability for the isotropic Heisenberg chain [J].
Tsuboi, Z ;
Shiroishi, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (20) :L363-L370
[56]   GROUND-STATE ENERGY OF A HEISENBERG-ISING LATTICE [J].
YANG, CN ;
YANG, CP .
PHYSICAL REVIEW, 1966, 147 (01) :303-&