A unified enrichment approach addressing blending and conditioning issues in enriched finite elements

被引:34
作者
Agathos, Konstantinos [1 ]
Chatzi, Eleni [1 ]
Bordas, Stephane P. A. [2 ,3 ,4 ]
机构
[1] Swiss Fed Inst Technol, Dept Civil Environm & Geomat Engn, Stefano Franscini Pl 5, CH-8093 Zurich, Switzerland
[2] Luxembourg Univ, Res Unit Engn Sci, 6 Rue Richard Coudenhove Kalergi, L-1359 Luxembourg, Luxembourg
[3] Cardiff Univ, Inst Theoret Appl & Computat Mech, Cardiff CF24 3AA, S Glam, Wales
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
基金
瑞士国家科学基金会;
关键词
XFEM; GFEM; PU-FEM; Higher-order; Conditioning; CRACK-TIP ENRICHMENT; GENERALIZED FEM; X-FEM; XFEM; INTEGRATION; PARTITION; DISCONTINUITIES; IMPLEMENTATION; APPROXIMATION; INTERPOLATION;
D O I
10.1016/j.cma.2019.02.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a combination of techniques to improve the convergence and conditioning properties of partition of unity (PU) enriched finite element methods. By applying these techniques to different types of enrichment functions, namely polynomial, discontinuous and singular, higher order convergence rates can be obtained while keeping condition number growth rates similar to the ones corresponding to standard finite elements. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:673 / 700
页数:28
相关论文
共 69 条
[1]   Well Conditioned Extended Finite Elements and Vector Level Sets for Three-Dimensional Crack Propagation [J].
Agathos, Konstantinos ;
Ventura, Giulio ;
Chatzi, Eleni ;
Bordas, Stephane P. A. .
GEOMETRICALLY UNFITTED FINITE ELEMENT METHODS AND APPLICATIONS, 2017, 121 :307-329
[2]   Improving the conditioning of XFEM/GFEM for fracture mechanics problems through enrichment quasi-orthogonalization [J].
Agathos, Konstantinos ;
Bordas, Stephane P. A. ;
Chatzi, Eleni .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 :1051-1073
[3]   Stable 3D XFEM/vector level sets for non-planar 3D crack propagation and comparison of enrichment schemes [J].
Agathos, Konstantinos ;
Ventura, Giulio ;
Chatzi, Eleni ;
Bordas, Stephane P. A. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 113 (02) :252-276
[4]   Stable 3D extended finite elements with higher order enrichment for accurate non planar fracture [J].
Agathos, Konstantinos ;
Chatzi, Eleni ;
Bordas, Stephane P. A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 306 :19-46
[5]   A well-conditioned and optimally convergent XFEM for 3D linear elastic fracture [J].
Agathos, Konstantinos ;
Chatzi, Eleni ;
Bordas, Stephane P. A. ;
Talaslidis, Demosthenes .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 105 (09) :643-677
[6]  
Ahrens J., 2005, VISUALIZATION HDB, V717, P1, DOI 10.1016/B978-012387582-2/50038-1
[7]   Investigation of linear dependence problem of three-dimensional partition of unity-based finite element methods [J].
An, X. M. ;
Zhao, Z. Y. ;
Zhang, H. H. ;
Li, L. X. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 233 :137-151
[8]   Prediction of rank deficiency in partition of unity-based methods with plane triangular or quadrilateral meshes [J].
An, X. M. ;
Li, L. X. ;
Ma, G. W. ;
Zhang, H. H. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (5-8) :665-674
[9]  
[Anonymous], 2004, GMM LIB
[10]  
[Anonymous], 2015, PARAVIEW GUIDE PARAL