A Sustainable Chemicals Manufacturing Paradigm Using CO2 and Renewable H2

被引:40
作者
Bommareddy, Rajesh Reddy [1 ,3 ]
Wang, Yanming [1 ,3 ]
Pearcy, Nicole [3 ,4 ]
Hayes, Martin [2 ]
Lester, Edward [1 ]
Minton, Nigel P. [3 ]
Conradie, Alex V. [1 ]
机构
[1] Univ Nottingham, Dept Chem & Environm Engn, Nottingham NG7 2RD, England
[2] Johnson Matthey Technol Ctr, 28 Cambridge Sci Pk, Cambridge CB4 0 FP, England
[3] Univ Nottingham, Sch Life Sci, Biodiscovery Inst BDI, BBSRC EPSRC Synthet Biol Res Ctr, Nottingham NG7 2RD, England
[4] Univ Nottingham, Sch Vet Med & Sci, Nottingham LE12 5RD, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
SUPERCRITICAL WATER GASIFICATION; RALSTONIA-EUTROPHA H16; LIMITATIONS; CONVERSION; BIOMASS; EXPRESSION; CHEMISTRY; CARBON;
D O I
10.1016/j.isci.2020.101218
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The chemical industry must decarbonize to align with UN Sustainable Development Goals. A shift toward circular economiesmakes CO2 an attractive feedstock for producing chemicals, provided renewable H-2 is available through technologies such as supercritical water (scH(2)O) gasification. Furthermore, high carbon and energy efficiency is paramount to favorable techno-economics, which poses a challenge to chemo-catalysis. This study demonstrates continuous gas fermentation of CO2 and H-2 by the cell factory, Cupriavidus necator, to (R,R)-2,3-butanediol and isopropanol as case studies. Although a high carbon efficiency of 0.75 [(C-mol product)/(C-mol CO2)] is exemplified, the poor energy efficiency of biological CO2 fixation requires similar to 8 [(mol H-2)/(mol CO2)], which is techno-economically infeasible for producing commodity chemicals. Heat integration between exothermic gas fermentation and endothermic scH(2)O gasification overcomes this energy inefficiency. This study unlocks the promise of sustainable manufacturing using renewable feedstocks by combining the carbon efficiency of bio-catalysis with energy efficiency enforced through process engineering.
引用
收藏
页数:31
相关论文
共 39 条
[1]   The UN Sustainable Development Goals: How can sustainable chemistry contribute? A view from the chemical industry [J].
Axon, Sean ;
James, David .
CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2018, 13 :140-145
[2]   Thermodynamic constraints shape the structure of carbon fixation pathways [J].
Bar-Even, Arren ;
Flamholz, Avi ;
Noor, Elad ;
Milo, Ron .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2012, 1817 (09) :1646-1659
[3]   Surpassing the current limitations of biohydrogen production systems: The case for a novel hybrid approach [J].
Boboescu, Iulian Zoltan ;
Gherman, Vasile Daniel ;
Lakatos, Gergely ;
Pap, Bernadett ;
Biro, Tibor ;
Maroti, Gergely .
BIORESOURCE TECHNOLOGY, 2016, 204 :192-201
[5]  
Brigham CJ., 2013, Advanced Biofuels and Bioproducts, P1065
[6]   Supercritical water gasification of biomass for hydrogen production Review [J].
Correa, Catalina Rodriguez ;
Kruse, Andrea .
JOURNAL OF SUPERCRITICAL FLUIDS, 2018, 133 :573-590
[7]   Hydrogen production from the thermochemical conversion of biomass: issues and challenges [J].
Dou, Binlin ;
Zhang, Hua ;
Song, Yongchen ;
Zhao, Longfei ;
Jiang, Bo ;
He, Mingxing ;
Ruan, Chenjie ;
Chen, Haisheng ;
Xu, Yujie .
SUSTAINABLE ENERGY & FUELS, 2019, 3 (02) :314-342
[8]   Limitations in converting waste gases to fuels and chemicals [J].
Emerson, David Frederic ;
Stephanopoulos, Gregory .
CURRENT OPINION IN BIOTECHNOLOGY, 2019, 59 :39-45
[9]  
FRUND C, 1989, J BACTERIOL, V171, P6539
[10]   Conversion of Escherichia coli to Generate All Biomass Carbon from CO2 [J].
Gleizer, Shmuel ;
Ben-Nissan, Roee ;
Bar-On, Yinon M. ;
Antonovsky, Niv ;
Noor, Elad ;
Zohar, Yehudit ;
Jona, Ghil ;
Krieger, Eyal ;
Shamshoum, Melina ;
Bar-Even, Arren ;
Milo, Ron .
CELL, 2019, 179 (06) :1255-+