Surface chemistry-dominated underwater superoleophobic mesh with mussel-inspired zwitterionic coatings for oil/water separation and self-cleaning

被引:43
|
作者
Chen, Xiaolu [1 ]
Zhai, Yadan [1 ]
Han, Xia [1 ]
Liu, Honglai [1 ]
Hu, Ying [1 ]
机构
[1] East China Univ Sci & Technol, Key Lab Adv Mat, Sch Chem & Mol Engn, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
SBMA; PDA; PDOPA; Underwater superoleophobic; Oil/water separation; Self-cleaning; OIL-WATER SEPARATION; FOULING PROPERTY; REVERSE-OSMOSIS; MEMBRANE; WETTABILITY; STRATEGY; SUPERHYDROPHILICITY; HYDROPHILICITY; POLYDOPAMINE; HYDRATION;
D O I
10.1016/j.apsusc.2019.03.318
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mussel-inspired surface modification has been received great attention due to the universal adhesive properties of catechols for fabrication of multifunctional coatings, especially for gluing hydrophilic polymers to fabricate underwater-superoleophobic materials utilizing in oil/water separation. Despite the extensive research carried out on this topic, the similarity and discrepancy between catecholamine and catecholic amino acid on surface modification and post functionalization have not been fully addressed yet. In this work, underwater superoleophobic surfaces have been successfully developed by a two-step dip-coating method with mussel-inspired coatings and subsequent zwitterionic sulfobetaine methacrylate (SBMA) grafting onto stainless steel meshes and used in oil/water separation. Here, dopamine and 3,4-dihydroxy-L-phenylalanine were both served as mussel-adhesives. More specifically, small molecule zwitterion rather than polyzwitterion was functionalized onto mussel-inspired coatings to minimize the effect of surface topography on surface wettability. The modified surfaces were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle measurements to observe the surface morphology, estimate the surface roughness, and evaluate the wettability, respectively. It showed that SBMA modified meshes with polydopamine (PDA) or poly(3,4-dihydroxy- L-phenylalanine) (PDOPA) layer possessed quite different surface roughness, while both presented excellent oil repellency in water with underwater oil contact angles of 153 degrees-160 degrees, indicating a less dependence on surface roughness. Although by using the small molecule as the hydrophilic functionalized groups, the asprepared meshes exhibited good self-cleaning and oil/water separation performance (separation efficiency > 98% for hexane and > 97% for soybean oil) and outstanding recyclability with 98% separation efficiency after 30 cycles. This method provides insight into different properties of polycatechols and simplifies the fabrication process through the use of small molecule zwitterion rather than zwitterionic polymer. Besides, the modified meshes also exhibited excellent stability for long-term use. The resulting underwater superoleophobicity and robust self-cleaning ability promise an ideal candidate for oil/water separation and oil contamination restriction.
引用
收藏
页码:399 / 408
页数:10
相关论文
共 50 条
  • [21] Superhydrophobic Coatings with Periodic Ring Structured Patterns for Self-Cleaning and Oil-Water Separation
    Wang, Yongjin
    Gong, Xiao
    ADVANCED MATERIALS INTERFACES, 2017, 4 (16):
  • [22] Crosslinked biomimetic coating modified stainless-steel-mesh enables completely self-cleaning separation of crude oil/water mixtures
    Yao, Yao
    Dang, Xingzhi
    Qiao, Xinyu
    Li, Rong
    Chen, Jiazhi
    Huang, Zhihuan
    Gong, Yong-Kuan
    WATER RESEARCH, 2022, 224
  • [23] Photocatalytically Driven Self-Cleaning and Underwater Superoleophobic Copper Mesh Modified with Hierarchical Bi2WO6@CuO Nanowires for Oil/Water Separation
    Li, Zhikai
    He, Huaqiang
    Liang, Ying
    Ouyang, Like
    Zhang, Tian C.
    Yuan, Shaojun
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (37) : 16450 - 16461
  • [24] Switchable and simultaneous oil/water separation induced by prewetting with a superamphiphilic self-cleaning mesh
    Du, Xin
    You, Shijie
    Wang, Xiuheng
    Wang, Qiuru
    Lu, Jiandong
    CHEMICAL ENGINEERING JOURNAL, 2017, 313 : 398 - 403
  • [25] Fabrication of hydrophobic/oleophilic cotton fabric by mussel-inspired chemistry for oil/water separation
    Liping Liang
    Mengyao Su
    Cong Zheng
    Jiaqi Li
    Haihua Zhan
    Xuming Li
    Xu Meng
    Fibers and Polymers, 2017, 18 : 2307 - 2314
  • [26] Oxidant-Induced High-Efficient Mussel-Inspired Modification on PVDF Membrane with Superhydrophilicity and Underwater Superoleophobicity Characteristics for Oil/Water Separation
    Luo, Chongdan
    Liu, Qingxia
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (09) : 8297 - 8307
  • [27] Superhydrophilic and oleophobic sponges prepared based on Mussel-Inspired chemistry for efficient oil-water separation
    Sun, Jianteng
    Gao, Feng
    Hu, Jingwen
    Qi, Zhixian
    Huang, Yue
    Guo, Yonggui
    Chen, Ying
    Wei, Junfu
    Zhang, Huan
    Pang, Qianchan
    Wang, Huicai
    Zhang, Xiaoqing
    CHEMISTRY-AN ASIAN JOURNAL, 2024, 19 (03)
  • [28] Mussel-Inspired Durable TiO2/PDA-Based Superhydrophobic Paper with Excellent Self-Cleaning, High Chemical Stability, and Efficient Oil/Water Separation Properties
    He, Zhiwei
    Wu, Hanqing
    Shi, Zhen
    Gao, Xianming
    Sun, Yuping
    Liu, Xianguo
    LANGMUIR, 2022, 38 (19) : 6086 - 6098
  • [29] Nanostructured TiO2/CuO dual-coated copper meshes with superhydrophilic, underwater superoleophobic and self-cleaning properties for highly efficient oil/water separation
    Yuan, Shaojun
    Chen, Chen
    Raza, Aikifa
    Song, Ruixue
    Zhang, Tie-Jun
    Pehkonen, Simo O.
    Liang, Bin
    CHEMICAL ENGINEERING JOURNAL, 2017, 328 : 497 - 510
  • [30] Mussel primed grafted zwitterionic phosphorylcholine based superhydrophilic/underwater superoleophobic antifouling membranes for oil-water separation
    Kumar, A.
    Nayak, K.
    Muench, A. S.
    Uhlmann, P.
    Fery, A.
    Tripathi, B. P.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 290