Nonzero solutions for a system of variational inequalities in reflexive Banach spaces
被引:3
作者:
Wang, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Dept Math, Chengdu 610064, Peoples R ChinaGyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
Wang, Lei
[2
]
Cho, Yeol Je
论文数: 0引用数: 0
h-index: 0
机构:
Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
Gyeongsang Natl Univ, RINS, Chinju 660701, South KoreaGyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
Cho, Yeol Je
[1
,3
]
Huang, Nan-Jing
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Dept Math, Chengdu 610064, Peoples R ChinaGyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
Huang, Nan-Jing
[2
]
机构:
[1] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[2] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
[3] Gyeongsang Natl Univ, RINS, Chinju 660701, South Korea
In this paper, some existence theorems of nonzero solutions for a system of bilinear variational inequalities are proved by using the coincidence degree theory in reflexive Banach spaces. The results presented in this paper improve and extend some known results in the literature. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:579 / 585
页数:7
相关论文
共 9 条
[1]
Chang SS, 1991, Variational inequality and complementarity problem theory with applications
[2]
Facchinei F., 2007, Finite-dimensional variational inequalities and complementarity problems