Stochastic volatility corrections for interest rate derivatives

被引:26
作者
Cotton, P
Fouque, JP
Papanicolaou, G
Sircar, R
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] Princeton Univ, Operat Res & Financial Engn Dept, Princeton, NJ 08544 USA
关键词
stochastic volatility; interest rate models; asymptotic expressions;
D O I
10.1111/j.0960-1627.2004.00188.x
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We study simple models of short rates such as the Vasicek or CIR models, and compute corrections that come from the presence of fast mean-reverting stochastic volatility. We show how these small corrections can affect the shape of the term structure of interest rates giving a simple and efficient calibration tool. This is used to price other derivatives such as bond options. The analysis extends the asymptotic method developed for equity derivatives in Fouque, Papanicolaou, and Sircar (2000b). The assumptions and effectiveness of the theory are tested on yield curve data.
引用
收藏
页码:173 / 200
页数:28
相关论文
共 16 条
[1]  
COTTON P, 2001, THESIS STANFORD U
[2]  
Duffie D., 1996, MATH FINANC, V6, P379
[3]  
Duffie D., 1992, DYNAMIC ASSET PRICIN
[4]  
Fouque J. P., 2000, RISK, V13, P89
[5]  
Fouque J.-P., 2001, INT J THEOR APPL FIN, V4, P651, DOI DOI 10.1142/S0219024901001139
[6]  
Fouque J.-P., 1999, Asia-Pacific Financial Markets, V6, P37
[7]  
Fouque J.-P., 2000, International Journal of Theoretical and Applied Finance, V3, P101
[8]   Singular perturbations in option pricing [J].
Fouque, JP ;
Papanicolaou, G ;
Sircar, R ;
Solna, K .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (05) :1648-1665
[9]  
FOUQUE JP, 2003, J COMPUTAT FINAN SUM, P1
[10]  
FREY R, 1996, CWI Q, V10, P1