共 50 条
3D Local Manipulation of the Metal-Insulator Transition Behavior in VO2 Thin Film by Defect-Induced Lattice Engineering
被引:25
|作者:
Jia, Qi
[1
,2
]
Grenzer, Joerg
[3
]
He, Huabing
[4
]
Anwand, Wolfgang
[5
]
Ji, Yanda
[3
,6
]
Yuan, Ye
[3
]
Huang, Kai
[1
,2
]
You, Tiangui
[1
]
Yu, Wenjie
[1
]
Ren, Wei
[4
]
Chen, Xinzhong
[7
]
Liu, Mengkun
[7
]
Facsko, Stefan
[3
]
Wang, Xi
[1
,2
]
Ou, Xin
[1
]
机构:
[1] Chinese Acad Sci, State Key Lab Funct Mat Informat, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 10049, Peoples R China
[3] Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, Bautzner Landstr 400, D-01328 Dresden, Germany
[4] Shanghai Univ, Dept Phys, 99 Shangda Rd, Shanghai 200444, Peoples R China
[5] Helmholtz Zentrum Dresden Rossendorf, Inst Radiat Phys, Bautzner Landstr 400, D-01328 Dresden, Germany
[6] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 211106, Jiangsu, Peoples R China
[7] SUNY Univ, Dept Phys & Astron, Stony Brook, NY 11794 USA
来源:
ADVANCED MATERIALS INTERFACES
|
2018年
/
5卷
/
08期
关键词:
lattice engineering;
metal-insulator transition;
open volume defect;
vanadium dioxide;
VANADIUM DIOXIDE;
PHASE-TRANSITION;
TIO2;
001;
RESISTIVITY;
SILICON;
D O I:
10.1002/admi.201701268
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
The ability to manipulate the metal-insulator transition (MIT) of metal oxides is of critical importance for fundamental investigations of electron correlations and practical implementations of power efficient tunable electrical and optical devices. Most of the existing techniques including chemical doping and epitaxial strain modification can only modify the global transition temperature, while the capability to locally manipulate MIT is still lacking for developing highly integrated functional devices. Here, lattice engineering induced by the energetic noble gas ion allowing a 3D local manipulation of the MIT in VO2 films is demonstrated and a spatial resolution laterally within the micrometer scale is reached. Ion-induced open volume defects efficiently modify the lattice constants of VO2 and consequently reduce the MIT temperature continuously from 341 to 275 K. According to a density functional theory calculation, the effect of lattice constant variation reduces the phase change energy barrier and therefore triggers the MIT at a much lower temperature. VO2 films with multiple transitions in both in-plane and out-of-plane dimensions can be achieved by implantation through a shadow mask or multienergy implantation. Based on this method, temperature-controlled VO2 metasurface structure is demonstrated by tuning only locally the MIT behavior on the VO2 surfaces.
引用
收藏
页数:9
相关论文