TRANSMISSION EIGENVALUES

被引:128
作者
Paivarinta, Lassi [1 ]
Sylvester, John [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
芬兰科学院;
关键词
inverse scattering; Helmholtz equation; inverse problems; transmission eigenvalues;
D O I
10.1137/070697525
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The scattering of a time-harmonic plane wave in an inhomogeneous medium is modeled by the scattering problem for the Helmholtz equation. A transmission eigenvalue is a wavenumber at which the scattering operator has a nontrivial kernel or cokernel. Because many sampling methods for locating scatterers succeed only at wavenumbers that are not transmission eigenvalues, they have been studied for some time. Nevertheless, the existence of transmission eigenvalues has previously been proved only for radial scatterers. In this paper, we prove existence for scatterers without radial symmetry.
引用
收藏
页码:738 / 753
页数:16
相关论文
共 50 条
  • [21] A duality between scattering poles and transmission eigenvalues in scattering theory
    Cakoni, Fioralba
    Colton, David
    Haddar, Houssem
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2244):
  • [22] A spectral projection method for transmission eigenvalues
    ZENG Fang
    SUN JiGuang
    XU LiWei
    Science China(Mathematics), 2016, 59 (08) : 1613 - 1622
  • [23] Transmission eigenvalues for degenerate and singular cases
    Serov, Valery
    Sylvester, John
    INVERSE PROBLEMS, 2012, 28 (06)
  • [24] A spectral projection method for transmission eigenvalues
    Fang Zeng
    JiGuang Sun
    LiWei Xu
    Science China Mathematics, 2016, 59 : 1613 - 1622
  • [25] Discreteness of interior transmission eigenvalues revisited
    Hoai-Minh Nguyen
    Quoc-Hung Nguyen
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)
  • [26] TRANSMISSION EIGENVALUES FOR OPERATORS WITH CONSTANT COEFFICIENTS
    Hitrik, Michael
    Krupchyk, Katsiaryna
    Ola, Petri
    Paivarinta, Lassi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (06) : 2965 - 2986
  • [27] The inverse spectral problem for transmission eigenvalues
    Cogar, Samuel
    Colton, David
    Leung, Yuk-J
    INVERSE PROBLEMS, 2017, 33 (05)
  • [28] A spectral projection method for transmission eigenvalues
    Zeng Fang
    Sun JiGuang
    Xu LiWei
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (08) : 1613 - 1622
  • [29] Recursive integral method for transmission eigenvalues
    Huang, Ruihao
    Struthers, Allan A.
    Sun, Jiguang
    Zhang, Ruming
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 327 : 830 - 840
  • [30] Transmission eigenvalues for the self-adjoint Schrodinger operator on the half line
    Aktosun, Tuncay
    Papanicolaou, Vassilis G.
    INVERSE PROBLEMS, 2014, 30 (07)