Tensor-based methods for Wiener-Hammerstein system identification

被引:0
|
作者
Ben Ahmed, Zouhour [1 ]
Favier, Gerard
Derbel, Nabil [1 ]
机构
[1] Univ Sfax, Sfax Engn Sch, Lab CEM, Sfax 3038, Tunisia
来源
2013 10TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD) | 2013年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose tensor-based methods for identifying nonlinear Wiener-Hammerstein (W-H) systems. In a first step, the parameters of the linear subsystems are estimated using two different approaches based on the PARAFAC decomposition of the fifth-order Volterra kernel associated with the W-H system to be identified. The first approach consists in applying the iterative ALS algorithm, while the second approach uses the TOMFAC algorithm. In a second step, the coefficients of the nonlinear subsystem modeled as a polynomial, are estimated by means of the RLS algorithm. The proposed identification methods are illustrated by means of simulation results.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Wiener-Hammerstein System Identification: A Fast Approach Through Spearman Correlation
    Shaikh, Md Abu Hanif
    Barbe, Kurt
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2019, 68 (05) : 1628 - 1636
  • [22] Identification of a Wiener-Hammerstein system using an incremental nonlinear optimisation technique
    Tan, Ai Hui
    Wong, Hin Kwan
    Godfrey, Keith
    CONTROL ENGINEERING PRACTICE, 2012, 20 (11) : 1140 - 1148
  • [23] WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System Identification
    Zambrano, J.
    Sanchis, J.
    Herrero, J. M.
    Martinez, M.
    COMPLEXITY, 2018,
  • [24] Kernel Estimation of Wiener-Hammerstein System Nonlinearity
    Mzyk, Grzegorz
    STOCHASTIC MODELS, STATISTICS AND THEIR APPLICATIONS, 2015, 122 : 121 - 128
  • [25] An iterative method for Wiener-Hammerstein systems parameter identification
    Voeroes, Jozef
    JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2007, 58 (02): : 114 - 117
  • [26] Convex Relaxation Approach to the Identification of the Wiener-Hammerstein Model
    Sou, Kin Cheong
    Megretski, Alexandre
    Daniel, Luca
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 1375 - 1382
  • [27] Recursive Identification of Wiener-Hammerstein Systems with Nonparametric Nonlinearity
    Hu, Xiao-Li
    Jiang, Yue-Ping
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2013, 3 (04) : 311 - 332
  • [28] Wiener-Hammerstein model identification-recursive algorithms
    Emara-Shabaik, HE
    Ahmed, MS
    Al-Ajmi, KH
    JSME INTERNATIONAL JOURNAL SERIES C-MECHANICAL SYSTEMS MACHINE ELEMENTS AND MANUFACTURING, 2002, 45 (02) : 606 - 613
  • [29] Low-rank tensor recovery for Jacobian-based Volterra identification of parallel Wiener-Hammerstein systems
    Usevich, Konstantin
    Dreesen, Philippe
    Ishteva, Mariya
    IFAC PAPERSONLINE, 2021, 54 (07): : 463 - 468
  • [30] Linear approximation and identification of MIMO Wiener-Hammerstein systems
    Katayama, Tohru
    Ase, Hajime
    AUTOMATICA, 2016, 71 : 118 - 124