Modelling and stability analysis for a tuberculosis model with healthy education and treatment

被引:19
作者
Zhou, Xueyong [1 ,3 ]
Shi, Xiangyun [1 ,3 ]
Cheng, Huidong [2 ,4 ]
机构
[1] Xinyang Normal Univ, Coll Math & Informat Sci, Xinyang 464000, Herts, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Sci, Qingdao 266510, Shandong, Peoples R China
[3] Xinyang Normal Univ, Coll Math & Informat Sci, Xinyang 464000, Henan, Peoples R China
[4] Shandong Univ Sci & Technol, Coll Sci, Qingdao 266510, Shandong, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2013年 / 32卷 / 02期
基金
中国国家自然科学基金;
关键词
Tuberculosis model; Local stability; Backward bifurcation; Sensitivity analysis; MATHEMATICAL-MODEL; DRUG-RESISTANCE; TRANSMISSION; REINFECTION; DYNAMICS; MALARIA;
D O I
10.1007/s40314-013-0008-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a tuberculosis model with healthy education and treatment. The analysis of the model is presented in terms of the TB epidemic threshold . It is shown that the model has multiple equilibria and using the center manifold theory, the model exhibits the phenomenon of backward bifurcation where a stable disease-free equilibrium co-exists with a stable endemic equilibrium for a certain defined range of . We perform sensitivity analysis of on the parameters to determine their relative importance to TB transmission and prxevalence. Numerical simulations are presented to illustrate the results.
引用
收藏
页码:245 / 260
页数:16
相关论文
共 20 条
[1]   Tuberculosis transmission model with chemoprophylaxis and treatment [J].
Bhunu, C. P. ;
Garira, W. ;
Mukandavire, Z. ;
Zimba, M. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (04) :1163-1191
[2]   Control strategies for tuberculosis epidemics: New models for old problems [J].
Blower, SM ;
Small, PM ;
Hopewell, PC .
SCIENCE, 1996, 273 (5274) :497-500
[3]   New measurable indicator for tuberculosis case detection [J].
Borgdorff, MW .
EMERGING INFECTIOUS DISEASES, 2004, 10 (09) :1523-1528
[4]   Dynamical models of tuberculosis and their applications [J].
Castillo-Chavez, C ;
Song, BJ .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2004, 1 (02) :361-404
[5]   To treat or not to treat: The case of tuberculosis [J].
CastilloChavez, C ;
Feng, ZL .
JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 35 (06) :629-656
[6]   Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model [J].
Chitnis, Nakul ;
Hyman, James M. ;
Cushing, Jim M. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (05) :1272-1296
[7]   Effects of treatment and drug resistance on the transmission dynamics of malaria in endemic areas [J].
Chiyaka, Christinah ;
Garira, Winston ;
Dube, Shadreck .
THEORETICAL POPULATION BIOLOGY, 2009, 75 (01) :14-29
[8]   Prospects for worldwide tuberculosis control under the WHO DOTS strategy [J].
Dye, C ;
Garnett, GP ;
Sleeman, A ;
Williams, BG .
LANCET, 1998, 352 (9144) :1886-1891
[9]   A model for tuberculosis with exogenous reinfection [J].
Feng, ZL ;
Castillo-Chavez, C ;
Capurro, AF .
THEORETICAL POPULATION BIOLOGY, 2000, 57 (03) :235-247
[10]  
Guckenheimer J., 1983, DYNAMICAL SYSTEMS BI