Accelerated fluorine-19 MRI cell tracking using compressed sensing

被引:56
作者
Zhong, Jia
Mills, Parker H.
Hitchens, T. Kevin
Ahrens, Eric T. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Biol Sci, Pittsburgh, PA 15213 USA
基金
美国国家卫生研究院;
关键词
cell tracking; perfluorocarbon; fluorine-19; MRI; compressed sensing; rapid imaging; MAGNETICALLY LABELED CELLS; HYPERPOLARIZED C-13; RECONSTRUCTION; INFLAMMATION; QUANTIFICATION; VISUALIZATION; MODEL;
D O I
10.1002/mrm.24414
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Cell tracking using perfluorocarbon labels and fluorine-19 (19F) MRI is a noninvasive approach to visualize and quantify cell populations in vivo. In this study, we investigated three-dimensional compressed sensing methods to accelerate 19F MRI data acquisition for cell tracking and evaluate the impact of acceleration on 19F signal quantification. We show that a greater than 8-fold reduction in imaging time was feasible without pronounced image degradation and with minimal impact on the image signal-to-noise ratio and 19F quantification accuracy. In 19F phantom studies, we show that apparent feature topology is maintained with compressed sensing reconstruction, and false positive signals do not appear in areas devoid of fluorine. We apply the three-dimensional compressed sensing 19F MRI methods to quantify the macrophage burden in a localized wounding-inflammation mouse model in vivo; at 8-fold image acceleration, the 19F signal distribution was accurately reproduced, with no loss in signal-to-noise ratio. Our results demonstrate that three-dimensional compressed sensing methods have potential for advancing in vivo 19F cell tracking for a wide range of preclinical and translational applications. Magn Reson Med, 2013. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:1683 / 1690
页数:8
相关论文
共 41 条
[1]   In vivo imaging platform for tracking immunotherapeutic cells [J].
Ahrens, ET ;
Flores, R ;
Xu, HY ;
Morel, PA .
NATURE BIOTECHNOLOGY, 2005, 23 (08) :983-987
[2]   Compressed Sensing in Hyperpolarized 3He Lung MRI [J].
Ajraoui, Salma ;
Lee, Kuan J. ;
Deppe, Martin H. ;
Parnell, Steven R. ;
Parra-Robles, Juan ;
Wild, Jim M. .
MAGNETIC RESONANCE IN MEDICINE, 2010, 63 (04) :1059-1069
[3]   Cellular magnetic resonance imaging: current status and future prospects [J].
Arbab, Ali S. ;
Liu, Wei ;
Frank, Joseph A. .
EXPERT REVIEW OF MEDICAL DEVICES, 2006, 3 (04) :427-439
[4]   In Vivo MRI Cell Tracking: Clinical Studies [J].
Bulte, Jeff W. M. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2009, 193 (02) :314-325
[5]  
Bulte JWM, 2004, METHOD ENZYMOL, V386, P275
[6]   Sparsity and incoherence in compressive sampling [J].
Candes, Emmanuel ;
Romberg, Justin .
INVERSE PROBLEMS, 2007, 23 (03) :969-985
[7]   The influence of radial undersampling schemes on compressed sensing reconstruction in breast MRI [J].
Chan, Rachel W. ;
Ramsay, Elizabeth A. ;
Cheung, Edward Y. ;
Plewes, Donald B. .
MAGNETIC RESONANCE IN MEDICINE, 2012, 67 (02) :363-377
[8]   Exact reconstruction of sparse signals via nonconvex minimization [J].
Chartrand, Rick .
IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (10) :707-710
[9]   Improving Non-contrast-Enhanced Steady-State Free Precession Angiography with Compressed Sensing [J].
Cukur, Tolga ;
Lustig, Michael ;
Nishimura, Dwight G. .
MAGNETIC RESONANCE IN MEDICINE, 2009, 61 (05) :1122-1131
[10]   Compressed Sensing Reconstruction for Magnetic Resonance Parameter Mapping [J].
Doneva, Mariya ;
Boernert, Peter ;
Eggers, Holger ;
Stehning, Christian ;
Senegas, Julien ;
Mertins, Alfred .
MAGNETIC RESONANCE IN MEDICINE, 2010, 64 (04) :1114-1120