A TRIVARIATE INTERPOLATION ALGORITHM USING A CUBE-PARTITION SEARCHING PROCEDURE

被引:35
作者
Cavoretto, Roberto [1 ]
De Rossi, Alessandra [1 ]
机构
[1] Univ Turin, Dept Math G Peano, I-10123 Turin, Italy
关键词
meshless approximation; fast algorithms; partition of unity methods; radial basis functions; scattered data; RADIAL BASIS FUNCTIONS; MULTIVARIATE INTERPOLATION; SETS;
D O I
10.1137/140989157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a fast algorithm for trivariate interpolation, which is based on the partition of unity method for constructing a global interpolant by blending local radial basis function interpolants and using locally supported weight functions. The partition of unity algorithm is efficiently implemented and optimized by connecting the method with an effective cube-partition searching procedure. More precisely, we construct a cube structure, which partitions the domain and strictly depends on the size of its subdomains, so that the new searching procedure and, accordingly, the resulting algorithm enable us to efficiently deal with a large number of nodes. Complexity analysis and numerical experiments show high efficiency and accuracy of the proposed interpolation algorithm.
引用
收藏
页码:A1891 / A1908
页数:18
相关论文
共 33 条
[1]   Scattered and track data interpolation using an efficient strip searching procedure [J].
Allasia, G. ;
Besenghi, R. ;
Cavoretto, R. ;
De Rossi, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) :5949-5966
[2]  
[Anonymous], 2003, CAMBRIDGE MONOGR APP
[3]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[4]  
2-N
[5]  
Beatson RK, 2000, SIAM J SCI COMPUT, V22, P1717
[6]   Algorithm 798: High-dimensional interpolation using the modified Shepard method [J].
Berry, MW ;
Minser, KS .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1999, 25 (03) :353-366
[7]  
Bozzini M., 2002, Monografias de la Academia de Ciencias, Exactas, Fisicas, Quimicas y Naturales, de Zaragoza, P111
[8]   Spectral analysis and preconditioning techniques for radial basis function collocation matrices [J].
Cavoretto, R. ;
De Rossi, A. ;
Donatelli, M. ;
Serra-Capizzano, S. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2012, 19 (01) :31-52
[9]  
Cavoretto R., TRIVARIATE INTERPOLA