Species separation in inertial confinement fusion fuels

被引:50
作者
Bellei, C. [1 ]
Amendt, P. A. [1 ]
Wilks, S. C. [1 ]
Haines, M. G. [2 ]
Casey, D. T. [1 ,3 ]
Li, C. K. [3 ]
Petrasso, R. [3 ]
Welch, D. R. [4 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England
[3] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[4] Voss Scient, Albuquerque, NM 87108 USA
关键词
SHOCK-WAVE;
D O I
10.1063/1.4773291
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is shown by means of multi-fluid particle-in-cell simulations that convergence of the spherical shock wave that propagates through the inner gas of inertial confinement fusion-relevant experiments is accompanied by a separation of deuterium (D) and tritium (T) ions across the shock front. Deuterons run ahead of the tritons due to their lower mass and higher charge-to-mass ratio and can reach the center several tens of picoseconds before the tritons. The rising edge of the DD and TT fusion rate is also temporally separated by the same amount, which should be an observable in experiments and would be a direct proof of the "stratification conjecture" on the shock front [Amendt et al., Phys. Plasmas 18, 056308 (2011)]. Moreover, dephasing of the D and T shock components in terms of density and temperature leads to a degradation of the DT fusion yield as the converging shock first rebounds from the fuel center (shock yield). For the parameters of this study, the second peak in the fusion yield (compression yield) is strongly dependent on the choice of the flux limiter. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773291]
引用
收藏
页数:8
相关论文
共 25 条
[11]  
Goldman E., 1969, J FLUID MECH, V35, P575
[12]  
Hughes T.P., 1999, PHYS REV SPEC TOP-AC, V2, P110401
[13]   STRUCTURE OF A PLASMA SHOCK WAVE [J].
JAFFRIN, MY ;
PROBSTEIN, RF .
PHYSICS OF FLUIDS, 1964, 7 (10) :1658-1674
[14]   THE STRUCTURE OF A SHOCK WAVE IN A FULLY IONIZED GAS [J].
JUKES, JD .
JOURNAL OF FLUID MECHANICS, 1957, 3 (03) :275-285
[15]   Electro-diffusion in a plasma with two ion species [J].
Kagan, Grigory ;
Tang, Xian-Zhu .
PHYSICS OF PLASMAS, 2012, 19 (08)
[16]  
Laney CB., 1998, COMPUTATIONAL GASDYN
[17]   Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion [J].
Li, C. K. ;
Seguin, F. H. ;
Rygg, J. R. ;
Frenje, J. A. ;
Manuel, M. ;
Petrasso, R. D. ;
Betti, R. ;
Delettrez, J. ;
Knauer, J. P. ;
Marshall, F. ;
Meyerhofer, D. D. ;
Shvarts, D. ;
Smalyuk, V. A. ;
Stoeckl, C. ;
Landen, O. L. ;
Town, R. P. J. ;
Back, C. A. ;
Kilkenny, J. D. .
PHYSICAL REVIEW LETTERS, 2008, 100 (22)
[18]   The physics basis for ignition using indirect-drive targets on the National Ignition Facility [J].
Lindl, JD ;
Amendt, P ;
Berger, RL ;
Glendinning, SG ;
Glenzer, SH ;
Haan, SW ;
Kauffman, RL ;
Landen, OL ;
Suter, LJ .
PHYSICS OF PLASMAS, 2004, 11 (02) :339-491
[19]   Three-dimensional HYDRA simulations of National Ignition Facility targets [J].
Marinak, MM ;
Kerbel, GD ;
Gentile, NA ;
Jones, O ;
Munro, D ;
Pollaine, S ;
Dittrich, TR ;
Haan, SW .
PHYSICS OF PLASMAS, 2001, 8 (05) :2275-2280
[20]   Knudsen Layer Reduction of Fusion Reactivity [J].
Molvig, Kim ;
Hoffman, Nelson M. ;
Albright, B. J. ;
Nelson, Eric M. ;
Webster, Robert B. .
PHYSICAL REVIEW LETTERS, 2012, 109 (09)