An O(log n)-Approximation Algorithm for the Edge-Disjoint Paths Problem in Eulerian Planar Graphs

被引:10
|
作者
Kawarabayashi, Ken-Ichi [1 ]
Kobayashi, Yusuke [2 ]
机构
[1] Res Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
[2] Univ Tokyo, Bunkyo Ku, Tokyo 1138656, Japan
基金
日本学术振兴会;
关键词
Edge-disjoint paths; approximation algorithm; Eulerian graph; 4-edge-connected graph; MULTICOMMODITY FLOWS; APPROXIMATION ALGORITHMS; CONGESTION; HARDNESS;
D O I
10.1145/2438645.2438648
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this article, we study an approximation algorithm for the maximum edge-disjoint paths problem. In this problem, we are given a graph and a collection of pairs of vertices, and the objective is to find the maximum number of pairs that can be connected by edge-disjoint paths. We give an O(log n)-approximation algorithm for the maximum edge-disjoint paths problem when an input graph is either 4-edge-connected planar or Eulerian planar. This improves an O(log(2) n)-approximation algorithm given by Kleinberg [2005] for Eulerian planar graphs. Our result also generalizes the result by Chekuri et al. [2004, 2005] who gave an O(log n)-approximation algorithm for the maximum edge-disjoint paths problem with congestion two when an input graph is planar.
引用
收藏
页数:13
相关论文
共 48 条