Performance Comparison Between Bulk and SOI Junctionless Transistors

被引:66
作者
Han, Ming-Hung [1 ,2 ]
Chang, Chun-Yen [1 ,2 ]
Chen, Hung-Bin [1 ,2 ]
Wu, Jia-Jiun [1 ,2 ]
Cheng, Ya-Chi [3 ]
Wu, Yung-Chun [3 ]
机构
[1] Natl Chiao Tung Univ, Dept Elect Engn, Hsinchu 300, Taiwan
[2] Natl Chiao Tung Univ, Inst Elect, Hsinchu 300, Taiwan
[3] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu 300, Taiwan
关键词
Fin-shaped field-effect transistor (FinFET); junctionless (JL); 3-D simulation;
D O I
10.1109/LED.2012.2231395
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The design and characteristics of a junctionless (JL) bulk FinFET were compared with the silicon-on-insulator (SOI) JL nanowire transistor (JNT) using 3-D quantum transport device simulation. The JL bulk FinFET exhibits a favorable ON/OFF current ratio and short-channel characteristics by reducing the effective channel thickness that is caused by the channel/substrate junction. The drain-induced barrier lowering and the subthreshold slope are about 40 mV and 73 mV/dec, respectively, with an ON/OFF current ratio of 10(5) at W = 10 nm. The JL bulk FinFET is less sensitive to the channel thickness than the SOI JNT. Furthermore, the threshold voltage V-th of the JL bulk FinFET can be easily tuned by varying substrate doping concentration N-sub. The modulation range of V-th as N-sub changes from 10(18) to 10(19) cm(-3), which is around 30%.
引用
收藏
页码:169 / 171
页数:3
相关论文
共 15 条
[1]   Junctionless Nanowire Transistor (JNT): Properties and design guidelines [J].
Colinge, J. P. ;
Kranti, A. ;
Yan, R. ;
Lee, C. W. ;
Ferain, I. ;
Yu, R. ;
Akhavan, N. Dehdashti ;
Razavi, P. .
SOLID-STATE ELECTRONICS, 2011, 65-66 :33-37
[2]  
Colinge JP, 2010, NAT NANOTECHNOL, V5, P225, DOI [10.1038/nnano.2010.15, 10.1038/NNANO.2010.15]
[3]   Reduced electric field in junctionless transistors [J].
Colinge, Jean-Pierre ;
Lee, Chi-Woo ;
Ferain, Isabelle ;
Akhavan, Nima Dehdashti ;
Yan, Ran ;
Razavi, Pedram ;
Yu, Ran ;
Nazarov, Alexei N. ;
Doriac, Rodrigo T. .
APPLIED PHYSICS LETTERS, 2010, 96 (07)
[4]  
Dadgour H., 2008, International Conference on Computer-Aided Design, P1, DOI [10.1109/IEDM.2008.4796792, DOI 10.1109/IEDM.2008.4796792]
[5]   Mobility and screening effect in heavily doped accumulation-mode metal-oxide-semiconductor field-effect transistors [J].
Goto, Ken-Ichi ;
Yu, Tsung-Hsing ;
Wu, Jeff ;
Diaz, Carlos H. ;
Colinge, J. P. .
APPLIED PHYSICS LETTERS, 2012, 101 (07)
[6]  
Hisamoto D, 2000, IEEE T ELECTRON DEV, V47, P2320, DOI 10.1109/16.887014
[7]  
Hu CM, 2004, 2004 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, P4
[8]   Junctionless multigate field-effect transistor [J].
Lee, Chi-Woo ;
Afzalian, Aryan ;
Akhavan, Nima Dehdashti ;
Yan, Ran ;
Ferain, Isabelle ;
Colinge, Jean-Pierre .
APPLIED PHYSICS LETTERS, 2009, 94 (05)
[9]   Process-Variation Effect, Metal-Gate Work-Function Fluctuation, and Random-Dopant Fluctuation in Emerging CMOS Technologies [J].
Li, Yiming ;
Hwang, Chih-Hong ;
Li, Tien-Yeh ;
Han, Ming-Hung .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (02) :437-447
[10]   Characteristics of n-Type Junctionless Poly-Si Thin-Film Transistors With an Ultrathin Channel [J].
Lin, Horng-Chih ;
Lin, Cheng-I ;
Huang, Tiao-Yuan .
IEEE ELECTRON DEVICE LETTERS, 2012, 33 (01) :53-55