Microscale optical breakdown induced in bulk pure water by high-power nanosecond KrF laser pulses was studied using optical transmission and contact broadband photoacoustic techniques. The breakdown has been identified as a sharp transmission drop coinciding with the appearance of unipolar compressive acoustic pulses, both indicating a thresholdlike rise of local intrinsic absorption in the micrometer-scale laser focal volume. The acoustic pulses, which are much broader than the exciting laser pulse and show a strongly reduced far-field diffraction effect, result from breakdown-induced millimeter-sized steam bubbles. The acoustic pulse amplitudes exhibit a sub-linear (alpha I-3/4) pressure dependence on the laser intensity I characteristic of subcritical electron-ion plasma and demonstrating the avalanche enhancement of two-photon ionization above the breakdown threshold until the appearance of the critical plasma. In the critical plasma regime, where the transmission and the acoustic signals slowly vary as a function of laser intensity, the main acoustic pulse is preceded by nanosecond and sub-mu s prepulses, where the first one represents a GPa-level plasma-driven shock wave and the second one adjacent to the main pulse appears due to weak submillimeter-long heating of water surrounding the hot plasma by its bremsstrahlung radiation, indicating significant dissociation of water molecules in the plasma.