Machining Heat Induced Phase Transformation on the Surface Hardening Layer of High Strength Ferrous-Based Biomedical Stainless Steel

被引:0
作者
Chao, Chih-Yeh [2 ]
Chiang, Hsi-Jen [1 ,3 ]
Chung, Hsin-Ming [2 ]
Ou, Keng-Liang [1 ,4 ,5 ]
Yu, Chih-Hua [1 ,4 ]
机构
[1] Taipei Med Univ, Res Ctr Biomed Devices & Prototyping Prod, Taipei 110, Taiwan
[2] Pingtung Univ Sci & Technol, Dept Mech Engn, Pingtung 912, Taiwan
[3] Taipei Med Univ, Coll Oral Med, Sch Dent, Taipei 110, Taiwan
[4] Taipei Med Univ, Res Ctr Biomed Implants & Microsurg Devices, Taipei 110, Taiwan
[5] Taipei Med Univ, Coll Oral Med, Gratuate Inst Biomed Mat & Tissue Engn, Taipei 110, Taiwan
关键词
iron-aluminum-maganese-carbon-silicon-chromium alloy; microstructure; phase transformation; machinability;
D O I
10.2320/matertrans.M2012107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present study investigates the drilling characteristics of a high-strength Fe-8Al-30Mn-1C-1Si-3Cr (mass%) biomedical alloy. After machining, a surface-hardening layer with a Vickers hardness number (H-v) equal to 600 was observed. In addition, a gamma -> (gamma + kappa) phase transition was observed in the matrix and at the stress-induced twin boundaries of the surface-hardening layer. K-phase carbides ((Fe,Mn)(3)AlCx) having an L'1(2) structure with the lattice parameter a = 0.375 nm were precipitated. Furthermore, the heat transfer coefficient of the present alloy was 0.083 cal/(cm(2)s degrees C), which was lower than that of AISI 304 stainless steel, which was 0.098 cal/(cm(2)s degrees C). The instantaneous'cutting temperature of the present alloy was approximately 650 degrees C during the machining process. It is believed that the formation of kappa-phase carbides not only decreases the machinability of the present alloy, but also reduces the life of the cutting tool. These features could be useful in further understanding the relationship between the machinability and the microstructure of Fe-Al-Mn C-based alloys, and thus provide information that would be allow these alloys to be used in biomedical and industrial applications, [doi:10.2320/matertrans.M2012107]
引用
收藏
页码:1391 / 1394
页数:4
相关论文
共 25 条
[1]  
Liu C.M., Cheng H.C., Chao C.Y., Ou K.L., J. Alloy. Compd., 488, (2009)
[2]  
Chang S.C., Hsiau Y.H., Jahn M.T., J. Mater. Sci., 24, pp. 11-17, (1989)
[3]  
Huang C.F., Ou K.L., Chen C.S., Wang C.H., J. Alloy. Compd., 488, (2009)
[4]  
Chen M.S., Cheng H.C., Huang C.F., Chao C.Y., Ou K.L., Yu C.H., Mater. Charact., 61, (2010)
[5]  
Chen C.S., Lin C.T., Peng P.W., Huang M.S., Ou K.L., Lin L.H., Yu C.H., J. Alloy. Compd., 493, pp. 3-46, (2010)
[6]  
Sun Z., Davies H.A., Whiteman J.A., Metal Sci., 18, (1984)
[7]  
Inoue A., Kojima Y., Minemura T., Masumoto T., Metall. Mater. Trans. A, 12, pp. 12-45, (1981)
[8]  
Banerji S.K., Metal Prog., 113, (1978)
[9]  
Han K.H., Choo W.K., Laughlin D.E., Scr. Mater., 22, pp. 18-73, (1988)
[10]  
Sato K., Tagawa K., Inoue Y., Mater. Sci. Eng. A, 111, (1989)