Efficient hydrogen production from aqueous methanol in a PEM electrolyzer with porous metal flow field: Influence of PTFE treatment of the anode gas diffusion layer

被引:26
作者
Anh Tuan Pham [1 ]
Baba, Tomohiro [1 ]
Sugiyama, Tatsuki [1 ]
Shudo, Toshio [1 ]
机构
[1] Tokyo Metropolitan Univ, Grad Sch Sci & Engn, Hachioji, Tokyo 1920397, Japan
关键词
Hydrogen production; Methanol electrolysis; Porous metal flow field; Proton exchange membrane (PEM); Gas diffusion layer; Polytetrafluoroethylene (PTFE); ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; FUEL-CELL ANODES; PERFORMANCE; WATER; OXIDATION; KINETICS; DMFC;
D O I
10.1016/j.ijhydene.2012.10.036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In a proton exchange membrane (PEM) methanol electrolyzer, the even supply of reactant to and the smooth removal of carbon dioxide from the anode are very important in order to achieve a high hydrogen production performance. An appropriate design of flow field and gas diffusion layer (GDL) is a key factor in satisfying the above requirements. Previous research has shown that hydrogen production performance of the PEM methanol electrolyzer cell was largely improved with a porous flow field made of sintered spherical metal powder compared with a conventional groove type flow field. Based on this improvement, the current study investigated the influence of polytetrafluoroethylene (PTFE) treatment of the anode GDL on hydrogen production performance of the PEM methanol electrolyzer with porous metal flow fields. Influences of operating conditions such as methanol concentration and cell temperature with the flow field were also investigated. Copyright (c) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:73 / 81
页数:9
相关论文
共 38 条
[1]   Electrochemical impedance spectroscopy study of methanol oxidation on nanoparticulate PtRu direct methanol fuel cell anodes: Kinetics and performance evaluation [J].
Chakraborty, Debasish ;
Chorkendoff, Ib ;
Johannessen, Tue .
JOURNAL OF POWER SOURCES, 2006, 162 (02) :1010-1022
[2]   Electrolytic production of hydrogen from aqueous acidic methanol solutions [J].
Cloutier, Caroline R. ;
Wilkinson, David P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (09) :3967-3984
[3]   International activities in DMFC R&D:: status of technologies and potential applications [J].
Dillon, R ;
Srinivasan, S ;
Aricò, AS ;
Antonucci, V .
JOURNAL OF POWER SOURCES, 2004, 127 (1-2) :112-126
[4]  
Faghri Li X, 2012, INT J THERM SCI, V62, P12
[5]   TEMPERATURE-DEPENDENT METHANOL ELECTROOXIDATION ON WELL-CHARACTERIZED PT-RU ALLOYS [J].
GASTEIGER, HA ;
MARKOVIC, N ;
ROSS, PN ;
CAIRNS, EJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (07) :1795-1803
[6]   Performance and methanol permeation of direct methanol fuel cells:: dependence on operating conditions and on electrode structure [J].
Gogel, V ;
Frey, T ;
Zhu, YS ;
Friedrich, KA ;
Jörissen, L ;
Garche, J .
JOURNAL OF POWER SOURCES, 2004, 127 (1-2) :172-180
[7]   High-pressure PEM water electrolysis and corresponding safety issues [J].
Grigoriev, S. A. ;
Porembskiy, V. I. ;
Korobtsev, S. V. ;
Fateev, V. N. ;
Aupretre, F. ;
Millet, P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (03) :2721-2728
[8]   Optimization of porous current collectors for PEM water electrolysers [J].
Grigoriev, S. A. ;
Millet, P. ;
Volobuev, S. A. ;
Fateev, V. N. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (11) :4968-4973
[9]   Effect of flow regime of circulating water on a proton exchange membrane electrolyzer [J].
Ito, H. ;
Maeda, T. ;
Nakano, A. ;
Hasegawa, Y. ;
Yokoi, N. ;
Hwang, C. M. ;
Ishida, M. ;
Kato, A. ;
Yoshida, T. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (18) :9550-9560
[10]   Experimental study on porous current collectors of PEM electrolyzers [J].
Ito, Hiroshi ;
Maeda, Tetsuhiko ;
Nakano, Akihiro ;
Hwang, Chul Min ;
Ishida, Masayoshi ;
Kato, Atsushi ;
Yoshida, Tetsuya .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (09) :7418-7428