Non-parametric bayesian inference for inhomogeneous markov point processes

被引:9
|
作者
Berthelsen, Kasper K. [1 ]
Moller, Jesper [1 ]
机构
[1] Aalborg Univ, Dept Math Sci, DK-9220 Aalborg, Denmark
基金
英国工程与自然科学研究理事会;
关键词
auxiliary variable method; hard core; Markov chain Monte Carlo; pairwise interaction point process; partially ordered Markov point process; perfect simulation; shot noise process;
D O I
10.1111/j.1467-842X.2008.00516.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
With reference to a specific dataset, we consider how to perform a flexible non-parametric Bayesian analysis of an inhomogeneous point pattern modelled by a Markov point process, with a location-dependent first-order term and pairwise interaction only. A priori we assume that the first-order term is a shot noise process, and that the interaction function for a pair of points depends only on the distance between the two points and is a piecewise linear function modelled by a marked Poisson process. Simulation of the resulting posterior distribution using a Metropolis-Hastings algorithm in the 'conventional' way involves evaluating ratios of unknown normalizing constants. We avoid this problem by applying a recently introduced auxiliary variable technique. In the present setting, the auxiliary variable used is an example of a partially ordered Markov point process model.
引用
收藏
页码:257 / 272
页数:16
相关论文
共 50 条
  • [41] NON-PARAMETRIC STATISTICAL INFERENCE FOR THE SURVIVAL EXPERIMENTS
    Ramadurai, M.
    Basha, M. A. Ghouse
    JP JOURNAL OF BIOSTATISTICS, 2021, 18 (03) : 379 - 394
  • [42] Comparison of parametric and non-parametric Bayesian inference for fusing sensory estimates in physiological time-series analysis
    Zhu, Tingting
    Javed, Hamza
    Clifton, David A.
    HEALTHCARE TECHNOLOGY LETTERS, 2021, 8 (02) : 25 - 30
  • [43] Non-parametric Inference Adaptive to Intrinsic Dimension
    Khosravi, Khashayar
    Lewis, Greg
    Syrgkanis, Vasilis
    CONFERENCE ON CAUSAL LEARNING AND REASONING, VOL 177, 2022, 177
  • [44] Parametric and non-parametric gradient matching for network inference: a comparison
    Dony, Leander
    He, Fei
    Stumpf, Michael P. H.
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [45] Parametric and non-parametric gradient matching for network inference: a comparison
    Leander Dony
    Fei He
    Michael P. H. Stumpf
    BMC Bioinformatics, 20
  • [46] A Bias Bound Approach to Non-parametric Inference
    Schennach, Susanne M.
    REVIEW OF ECONOMIC STUDIES, 2020, 87 (05): : 2439 - 2472
  • [47] Change point detection and inference in multivariate non-parametric models under mixing conditions
    Padilla, Carlos Misael Madrid
    Xu, Haotian
    Wang, Daren
    Padilla, Oscar Hernan Madrid
    Yu, Yi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [48] A non-parametric Bayesian approach to spike sorting
    Wood, Frank
    Goldwater, Sharon
    Black, Michael J.
    2006 28TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-15, 2006, : 2895 - +
  • [49] Smoothness in Bayesian Non-parametric Regression with Wavelets
    Marco Di Zio
    Arnoldo Frigessi
    Methodology And Computing In Applied Probability, 1999, 1 (4) : 391 - 405
  • [50] A BAYESIAN NON-PARAMETRIC APPROACH TO FREQUENCY ESTIMATION
    Favaro, Martina
    Picci, Giorgio
    IFAC PAPERSONLINE, 2015, 48 (28): : 478 - 483