Non-parametric bayesian inference for inhomogeneous markov point processes

被引:9
|
作者
Berthelsen, Kasper K. [1 ]
Moller, Jesper [1 ]
机构
[1] Aalborg Univ, Dept Math Sci, DK-9220 Aalborg, Denmark
基金
英国工程与自然科学研究理事会;
关键词
auxiliary variable method; hard core; Markov chain Monte Carlo; pairwise interaction point process; partially ordered Markov point process; perfect simulation; shot noise process;
D O I
10.1111/j.1467-842X.2008.00516.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
With reference to a specific dataset, we consider how to perform a flexible non-parametric Bayesian analysis of an inhomogeneous point pattern modelled by a Markov point process, with a location-dependent first-order term and pairwise interaction only. A priori we assume that the first-order term is a shot noise process, and that the interaction function for a pair of points depends only on the distance between the two points and is a piecewise linear function modelled by a marked Poisson process. Simulation of the resulting posterior distribution using a Metropolis-Hastings algorithm in the 'conventional' way involves evaluating ratios of unknown normalizing constants. We avoid this problem by applying a recently introduced auxiliary variable technique. In the present setting, the auxiliary variable used is an example of a partially ordered Markov point process model.
引用
收藏
页码:257 / 272
页数:16
相关论文
共 50 条
  • [31] Non-parametric inference for density modes
    Genovese, Christopher R.
    Perone-Pacifico, Marco
    Verdinelli, Isabella
    Wasserman, Larry
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (01) : 99 - 126
  • [32] Inhomogeneous Markov point processes by transformation
    Jensen, EBV
    Nielsen, LS
    BERNOULLI, 2000, 6 (05) : 761 - 782
  • [33] Non-parametric Bayesian annotator combination
    Servajean, M.
    Chailan, R.
    Joly, A.
    INFORMATION SCIENCES, 2018, 436 : 131 - 145
  • [34] An unsupervised and non-parametric bayesian classifier
    Zribi, M
    Ghorbel, F
    PATTERN RECOGNITION LETTERS, 2003, 24 (1-3) : 97 - 112
  • [35] Estimating a Non-parametric Memory Kernel for Mutually Exciting Point Processes*
    Clements, A. E.
    Hurn, A. S.
    Lindsay, K. A.
    Volkov, V. V.
    JOURNAL OF FINANCIAL ECONOMETRICS, 2023, 21 (05) : 1759 - 1790
  • [36] Non-parametric tests for the comparison of point processes based on incomplete data
    Sun, JG
    Rai, SN
    SCANDINAVIAN JOURNAL OF STATISTICS, 2001, 28 (04) : 725 - 732
  • [37] Non-parametric Bayesian modeling of hazard rate with a change point for nanoelectronic devices
    Yang, Chia-Han
    Yuan, Tao
    Kuo, Way
    Kuo, Yue
    IIE TRANSACTIONS, 2012, 44 (07) : 496 - 506
  • [38] Non-parametric inference for balanced randomization designs
    Rukhin, Andrew L.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (03) : 967 - 984
  • [39] Non-parametric Inference and Coordination for Distributed Robotics
    Julian, Brian J.
    Angermann, Michael
    Rus, Daniela
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 2787 - 2794
  • [40] Non-parametric inference on calibration of predicted risks
    Sadatsafavi, Mohsen
    Petkau, John
    STATISTICS IN MEDICINE, 2024, 43 (18) : 3524 - 3538