Non-parametric bayesian inference for inhomogeneous markov point processes

被引:9
|
作者
Berthelsen, Kasper K. [1 ]
Moller, Jesper [1 ]
机构
[1] Aalborg Univ, Dept Math Sci, DK-9220 Aalborg, Denmark
基金
英国工程与自然科学研究理事会;
关键词
auxiliary variable method; hard core; Markov chain Monte Carlo; pairwise interaction point process; partially ordered Markov point process; perfect simulation; shot noise process;
D O I
10.1111/j.1467-842X.2008.00516.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
With reference to a specific dataset, we consider how to perform a flexible non-parametric Bayesian analysis of an inhomogeneous point pattern modelled by a Markov point process, with a location-dependent first-order term and pairwise interaction only. A priori we assume that the first-order term is a shot noise process, and that the interaction function for a pair of points depends only on the distance between the two points and is a piecewise linear function modelled by a marked Poisson process. Simulation of the resulting posterior distribution using a Metropolis-Hastings algorithm in the 'conventional' way involves evaluating ratios of unknown normalizing constants. We avoid this problem by applying a recently introduced auxiliary variable technique. In the present setting, the auxiliary variable used is an example of a partially ordered Markov point process model.
引用
收藏
页码:257 / 272
页数:16
相关论文
共 50 条
  • [21] The semi-Markov beta-Stacy process: a Bayesian non-parametric prior for semi-Markov processes.
    Arfe, Andrea
    Peluso, Stefano
    Muliere, Pietro
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2021, 24 (01) : 1 - 15
  • [22] CONSISTENT NON-PARAMETRIC BAYESIAN ESTIMATION FOR A TIME-INHOMOGENEOUS BROWNIAN MOTION
    Gugushvili, Shota
    Spreij, Peter
    ESAIM-PROBABILITY AND STATISTICS, 2014, 18 : 332 - 341
  • [23] A Non-Parametric Inference Technique for Shape Boundaries in Noisy Point Clouds
    Ozgen, Selim
    Faion, Florian
    Zea, Antonio
    Hanebeck, Uwe D.
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2017, : 626 - 631
  • [24] A Bayesian non-parametric hidden Markov random model for hemodynamic brain parcellation
    Albughdadi, M.
    Chaari, L.
    Tourneret, J. -Y.
    Forbes, F.
    Ciuciu, P.
    SIGNAL PROCESSING, 2017, 135 : 132 - 146
  • [25] Bayesian Non-Parametric Inference for Multivariate Peaks-over-Threshold Models
    Trubey, Peter
    Sanso, Bruno
    ENTROPY, 2024, 26 (04)
  • [26] Non-parametric smoothing of spatio-temporal point processes
    Grillenzoni, C
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 128 (01) : 61 - 78
  • [27] A non-parametric Bayesian change-point method for recurrent events
    Li, Qing
    Guo, Feng
    Kim, Inyoung
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (16) : 2929 - 2948
  • [28] Non-parametric inference on the number of equilibria
    Kasy, Maximilian
    ECONOMETRICS JOURNAL, 2015, 18 (01): : 1 - 39
  • [29] Non-Parametric Inference of Relational Dependence
    Ahsan, Ragib
    Fatemi, Zahra
    Arbour, David
    Zheleva, Elena
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 54 - 63
  • [30] Statistical inference in the non-parametric case
    Scheffe, H
    ANNALS OF MATHEMATICAL STATISTICS, 1943, 14 : 305 - 332