Non-parametric bayesian inference for inhomogeneous markov point processes

被引:9
|
作者
Berthelsen, Kasper K. [1 ]
Moller, Jesper [1 ]
机构
[1] Aalborg Univ, Dept Math Sci, DK-9220 Aalborg, Denmark
基金
英国工程与自然科学研究理事会;
关键词
auxiliary variable method; hard core; Markov chain Monte Carlo; pairwise interaction point process; partially ordered Markov point process; perfect simulation; shot noise process;
D O I
10.1111/j.1467-842X.2008.00516.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
With reference to a specific dataset, we consider how to perform a flexible non-parametric Bayesian analysis of an inhomogeneous point pattern modelled by a Markov point process, with a location-dependent first-order term and pairwise interaction only. A priori we assume that the first-order term is a shot noise process, and that the interaction function for a pair of points depends only on the distance between the two points and is a piecewise linear function modelled by a marked Poisson process. Simulation of the resulting posterior distribution using a Metropolis-Hastings algorithm in the 'conventional' way involves evaluating ratios of unknown normalizing constants. We avoid this problem by applying a recently introduced auxiliary variable technique. In the present setting, the auxiliary variable used is an example of a partially ordered Markov point process model.
引用
收藏
页码:257 / 272
页数:16
相关论文
共 50 条
  • [1] Implementation of Bayesian non-parametric inference based on beta processes
    Damien, P
    Laud, PW
    Smith, AFM
    SCANDINAVIAN JOURNAL OF STATISTICS, 1996, 23 (01) : 27 - 36
  • [2] Non-parametric Bayesian inference for continuous density hidden Markov mixture model
    Bathaee, Najmeh
    Sheikhzadeh, Hamid
    STATISTICAL METHODOLOGY, 2016, 33 : 256 - 275
  • [3] Non-parametric Bayesian inference on bivariate extremes
    Guillotte, Simon
    Perron, Francois
    Segers, Johan
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 : 377 - 406
  • [4] NON-PARAMETRIC BAYESIAN INFERENCE FOR CHANGE POINT DETECTION IN NEURAL SPIKE TRAINS
    Alt, Bastian
    Messer, Michael
    Roeper, Jochen
    Schneider, Gaby
    Koeppl, Heinz
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 258 - 262
  • [5] Bayesian non-parametric inference for stochastic epidemic models using Gaussian Processes
    Xu, Xiaoguang
    Kypraios, Theodore
    O'Neill, Philip D.
    BIOSTATISTICS, 2016, 17 (04) : 619 - 633
  • [6] Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling
    Berthelsen, KK
    Moller, J
    SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (03) : 549 - 564
  • [7] Non-parametric Bayesian inference of strategies in repeated games
    Kleiman-Weiner, Max
    Tenenbaum, Joshua B.
    Zhou, Penghui
    ECONOMETRICS JOURNAL, 2018, 21 (03): : 298 - 315
  • [8] Efficient Non-parametric Bayesian Hawkes Processes
    Zhang, Rui
    Walder, Christian
    Rizoiu, Marian-Andrei
    Xie, Lexing
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4299 - 4305
  • [9] Bayesian non-parametric inference for Λ-coalescents: Posterior consistency and a parametric method
    Koskela, Jere
    Jenkins, Paul A.
    Spano, Dario
    BERNOULLI, 2018, 24 (03) : 2122 - 2153
  • [10] Non-parametric confidence intervals for correlations in nearest-neighbour Markov point processes
    Pallini, A
    ENVIRONMETRICS, 2002, 13 (02) : 187 - 207