How to save a bad element with weak boundary conditions

被引:9
作者
Hanert, E
Legat, V
机构
[1] Univ Catholique Louvain, Ctr Syst Engn & Appl Mech, B-1348 Louvain, Belgium
[2] Univ Reading, Dept Meteorol, Reading RG6 6BB, Berks, England
关键词
D O I
10.1016/j.compfluid.2005.02.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The P-1-P-1 finite element pair is known to allow the existence of spurious pressure (surface elevation) modes for the shallow water equations and to be unstable for mixed formulations. We show that this behavior is strongly influenced by the strong or the weak enforcement of the impermeability boundary conditions. A numerical analysis of the Stommel model is performed for both P-1-P-1 and P-1(NC)-P-1 mixed formulations. Steady and transient test cases are considered. We observe that the P-1-P-1 element exhibits stable discrete solutions with weak boundary conditions or with fully unstructured meshes. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:477 / 484
页数:8
相关论文
共 29 条
[1]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[2]  
BOYD JP, 1980, J PHYS OCEANOGR, V10, P1699, DOI 10.1175/1520-0485(1980)010<1699:ESWPIR>2.0.CO
[3]  
2
[4]   STABILIZED MIXED METHODS FOR THE STOKES PROBLEM [J].
BREZZI, F ;
DOUGLAS, J .
NUMERISCHE MATHEMATIK, 1988, 53 (1-2) :225-235
[5]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[6]  
Brezzi F., 1991, SPRINGER SERIES COMP, V15
[7]  
Collatz L., 1966, NUMERICAL TREATMENT
[8]   A finite-element ocean model:: principles and evaluation [J].
Danilov, S ;
Kivman, G ;
Schröter, J .
OCEAN MODELLING, 2004, 6 (02) :125-150
[9]   An efficient Eulerian finite element method for the shallow water equations [J].
Hanert, E ;
Le Roux, DY ;
Legat, V ;
Deleersnijder, E .
OCEAN MODELLING, 2005, 10 (1-2) :115-136
[10]   Advection schemes for unstructured grid ocean modelling [J].
Hanert, E ;
Le Roux, DY ;
Legat, V ;
Deleersnijder, E .
OCEAN MODELLING, 2004, 7 (1-2) :39-58