Early Amyloidogenic Oligomerization Studied through Fluorescence Lifetime Correlation Spectroscopy

被引:21
|
作者
Paredes, Jose M. [1 ]
Casares, Salvador [2 ]
Ruedas-Rama, Maria J. [1 ]
Fernandez, Elena [2 ]
Castello, Fabio [1 ]
Varela, Lorena [2 ]
Orte, Angel [1 ]
机构
[1] Univ Granada, Fac Pharm, Dept Phys Chem, E-18071 Granada, Spain
[2] Fac Sci, Dept Phys Chem, Granada 18071, Spain
关键词
amyloids; protein aggregation; pulsed interleaved excitation; protein oligomers; single-molecule fluorescence; SINGLE-MOLECULE; ALPHA-SYNUCLEIN; PROTEIN AGGREGATION; MECHANISM; DYNAMICS; KINETICS; FCS;
D O I
10.3390/ijms13089400
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Amyloidogenic protein aggregation is a persistent biomedical problem. Despite active research in disease-related aggregation, the need for multidisciplinary approaches to the problem is evident. Recent advances in single-molecule fluorescence spectroscopy are valuable for examining heterogenic biomolecular systems. In this work, we have explored the initial stages of amyloidogenic aggregation by employing fluorescence lifetime correlation spectroscopy (FLCS), an advanced modification of conventional fluorescence correlation spectroscopy (FCS) that utilizes time-resolved information. FLCS provides size distributions and kinetics for the oligomer growth of the SH3 domain of a-spectrin, whose N47A mutant forms amyloid fibrils at pH 3.2 and 37 degrees C in the presence of salt. The combination of FCS with additional fluorescence lifetime information provides an exciting approach to focus on the initial aggregation stages, allowing a better understanding of the fibrillization process, by providing multidimensional information, valuable in combination with other conventional methodologies.
引用
收藏
页码:9400 / 9418
页数:19
相关论文
共 50 条
  • [1] Fluorescence Lifetime Correlation Spectroscopy
    Peter Kapusta
    Michael Wahl
    Aleš Benda
    Martin Hof
    Jörg Enderlein
    Journal of Fluorescence, 2007, 17 : 43 - 48
  • [2] Fluorescence lifetime correlation spectroscopy
    Kapusta, Peter
    Wahl, Michael
    Benda, Ales
    Hof, Martin
    Enderlein, Jorg
    JOURNAL OF FLUORESCENCE, 2007, 17 (01) : 43 - 48
  • [3] Fluorescence correlation spectroscopy and fluorescence lifetime imaging microscopy
    Breusegem, Sophia Y.
    Levi, Moshe
    Barry, Nicholas P.
    NEPHRON EXPERIMENTAL NEPHROLOGY, 2006, 103 (02): : E41 - E49
  • [4] Fluorescence lifetime correlation spectroscopy: Basics and applications
    Ghosh, Arindam
    Karedla, Narain
    Thiele, Jan Christoph
    Gregor, Ingo
    Enderlein, Jorg
    METHODS, 2018, 140 : 32 - 39
  • [5] Principles and Applications of Fluorescence Lifetime Correlation Spectroscopy
    Beranova, Lenka
    Humpolickova, Jana
    Hof, Martin
    OPTICAL SENSORS 2009, 2009, 7356
  • [6] Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy. 2. Application
    Ishii, Kunihiko
    Tahara, Tahei
    JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (39): : 11423 - 11432
  • [7] Crosslinking of Streptavidin-Biotinylated Bovine Serum Albumin Studied with Fluorescence Correlation Spectroscopy
    Lee, Sujin
    Kim, Hahkjoon
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2021, 42 (01) : 80 - 86
  • [8] Resolving Inhomogeneity Using Lifetime-Weighted Fluorescence Correlation Spectroscopy
    Ishii, Kunihiko
    Tahara, Tahei
    JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (38): : 12383 - 12391
  • [9] Diffusion in Polymer Solutions Studied by Fluorescence Correlation Spectroscopy
    Cherdhirankorn, Thipphaya
    Best, Andreas
    Koynov, Kaloian
    Peneva, Kalina
    Muellen, Klaus
    Fytas, George
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (11): : 3355 - 3359
  • [10] Total Internal Reflection Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy
    Otosu, Takuhiro
    Yamaguchi, Shoichi
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (22): : 5758 - 5764