Improving the estimation and partitioning of plant nitrogen in the RiceGrow model

被引:11
作者
Tang, L. [1 ]
Chang, R. J. [1 ]
Basso, B. [2 ,3 ]
Li, T. [4 ]
Zhen, F. X. [1 ]
Liu, L. L. [1 ]
Cao, W. X. [1 ]
Zhu, Y. [1 ]
机构
[1] Nanjing Agr Univ, Natl Engn & Technol Ctr Informat Agr, Key Lab Crop Syst Anal & Decis Making, Minist Agr,Jiangsu Key Lab Informat Agr,Jiangsu C, Nanjing 210095, Jiangsu, Peoples R China
[2] Michigan State Univ, Dept Earth & Environm Sci, E Lansing, MI 48824 USA
[3] Michigan State Univ, WK Kellogg Biol Stn, E Lansing, MI 48824 USA
[4] Int Rice Res Inst, Los Banos, Philippines
基金
美国国家科学基金会;
关键词
Critical nitrogen dilution curve; nitrogen; rice; RiceGrow; simulation; DILUTION CURVE; PHENOLOGICAL DEVELOPMENT; NUTRITION INDEX; GROWTH; WHEAT; MANAGEMENT; YIELD; SIMULATION; CROPS; POTATO;
D O I
10.1017/S0021859618001004
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Plant nitrogen (N) links with many physiological progresses of crop growth and yield formation. Accurate simulation is key to predict crop growth and yield correctly. The aim of the current study was to improve the estimation of N uptake and translocation processes in the whole rice plant as well as within plant organs in the RiceGrow model by using plant and organ maximum, critical and minimum N dilution curves. The maximum and critical N (Nc) demand (obtained from the maximum and critical curves) of shoot and root and Nc demand of organs (leaf, stem and panicle) are calculated by N concentration and biomass. Nitrogen distribution among organs is computed differently pre- and post-anthesis. Pre-anthesis distribution is determined by maximum N demand with no priority among organs. In post-anthesis distribution, panicle demands are met first and then the remaining N is allocated to other organs without priority. The amount of plant N uptake depends on plant N demand and N supplied by the soil. Calibration and validation of the established model were performed on field experiments conducted in China and the Philippines with varied N rates and N split applications; results showed that this improved model can simulate the processes of N uptake and translocation well.
引用
收藏
页码:959 / 970
页数:12
相关论文
共 48 条
[1]  
[Anonymous], MODELING PLANT SOIL, DOI DOI 10.2134/AGR0NM0N0GR31.C13
[2]   Determination of Critical Nitrogen Dilution Curve Based on Stem Dry Matter in Rice [J].
Ata-Ul-Karim, Syed Tahir ;
Yao, Xia ;
Liu, Xiaojun ;
Cao, Weixing ;
Zhu, Yan .
PLOS ONE, 2014, 9 (08)
[3]   Development of critical nitrogen dilution curve of Japonica rice in Yangtze River Reaches [J].
Ata-Ul-Karim, Syed Tahir ;
Yao, Xia ;
Liu, Xiaojun ;
Cao, Weixing ;
Zhu, Yan .
FIELD CROPS RESEARCH, 2013, 149 :149-158
[4]   Critical nitrogen curve and nitrogen nutrition index for potato in eastern Canada [J].
Bélanger, G ;
Walsh, JR ;
Richards, JE ;
Milburn, PH ;
Ziadi, N .
AMERICAN JOURNAL OF POTATO RESEARCH, 2001, 78 (05) :355-364
[5]   Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions [J].
Bouman, BAM ;
van Laar, HH .
AGRICULTURAL SYSTEMS, 2006, 87 (03) :249-273
[6]   STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn [J].
Brisson, N ;
Mary, B ;
Ripoche, D ;
Jeuffroy, MH ;
Ruget, F ;
Nicoullaud, B ;
Gate, P ;
Devienne-Barret, F ;
Antonioletti, R ;
Durr, C ;
Richard, G ;
Beaudoin, N ;
Recous, S ;
Tayot, X ;
Plenet, D ;
Cellier, P ;
Machet, JM ;
Meynard, JM ;
Delecolle, R .
AGRONOMIE, 1998, 18 (5-6) :311-346
[7]   Determination of a critical nitrogen dilution curve for winter oilseed rape [J].
Colnenne, C ;
Meynard, JM ;
Reau, R ;
Justes, E ;
Merrien, A .
ANNALS OF BOTANY, 1998, 81 (02) :311-317
[8]   A new approach for determining rice critical nitrogen concentration [J].
Confalonieri, R. ;
Debellini, C. ;
Pirondini, M. ;
Possenti, P. ;
Bergamini, L. ;
Barlassina, G. ;
Bartoli, A. ;
Agostoni, E. G. ;
Appiani, M. ;
Babazadeh, L. ;
Bedin, E. ;
Bignotti, A. ;
Bouca, M. ;
Bulgari, R. ;
Cantore, A. ;
Degradi, D. ;
Facchinetti, D. ;
Fiacchino, D. ;
Frialdi, M. ;
Galuppini, L. ;
Gorrini, C. ;
Gritti, A. ;
Gritti, P. ;
Lonati, S. ;
Martinazzi, D. ;
Messa, C. ;
Minardi, A. ;
Nascimbene, L. ;
Oldani, D. ;
Pasqualini, E. ;
Perazzolo, F. ;
Pirovano, L. ;
Pozzi, L. ;
Rocchetti, G. ;
Rossi, S. ;
Rota, L. ;
Rubaga, N. ;
Russo, G. ;
Sala, J. ;
Seregni, S. ;
Sessa, F. ;
Silvestri, S. ;
Simoncelli, P. ;
Soresi, D. ;
Stemberger, C. ;
Tagliabue, P. ;
Tettamanti, K. ;
Vinci, M. ;
Vittadini, G. ;
Zanimacchia, M. .
JOURNAL OF AGRICULTURAL SCIENCE, 2011, 149 :633-638
[9]   A taxonomy-based approach to shed light on the babel of mathematical models for rice simulation [J].
Confalonieri, Roberto ;
Bregaglio, Simone ;
Adam, Myriam ;
Ruget, Francoise ;
Li, Tao ;
Hasegawa, Toshihiro ;
Yin, Xinyou ;
Zhu, Yan ;
Boote, Kenneth ;
Buis, Samuel ;
Fumoto, Tamon ;
Gaydon, Donald ;
Lafarge, Tanguy ;
Marcaida, Manuel ;
Nakagawa, Hiroshi ;
Ruane, Alex C. ;
Singh, Balwinder ;
Singh, Upendra ;
Tang, Liang ;
Tao, Fulu ;
Fugice, Job ;
Yoshida, Hiroe ;
Zhang, Zhao ;
Wilson, Lloyd T. ;
Baker, Jeff ;
Yang, Yubin ;
Masutomi, Yuji ;
Wallach, Daniel ;
Acutis, Marco ;
Bouman, Bas .
ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 85 :332-341
[10]   Uncertainty in crop model predictions: What is the role of users? [J].
Confalonieri, Roberto ;
Orlando, Francesca ;
Paleari, Livia ;
Stella, Tommaso ;
Gilardelli, Carlo ;
Movedi, Ermes ;
Pagani, Valentina ;
Cappelli, Giovanni ;
Vertemara, Andrea ;
Alberti, Luigi ;
Alberti, Paolo ;
Atanassiu, Samuel ;
Bonaiti, Matteo ;
Cappelletti, Giovanni ;
Ceruti, Matteo ;
Confalonieri, Andrea ;
Corgatelli, Gabriele ;
Corti, Paolo ;
Dell'Oro, Michele ;
Ghidoni, Alessandro ;
Lamarta, Angelo ;
Maghini, Alberto ;
Mambretti, Martino ;
Manchia, Agnese ;
Massoni, Gianluca ;
Mutti, Pierangelo ;
Pariani, Stefano ;
Pasini, Davide ;
Pesenti, Andrea ;
Pizzamiglio, Giovanni ;
Ravasio, Adriano ;
Rea, Alessandro ;
Santorsola, David ;
Serafini, Giulia ;
Slavazza, Marco ;
Acutis, Marco .
ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 81 :165-173