MULTIPLE IMPORTANCE SAMPLING WITH OVERLAPPING SETS OF PROPOSALS

被引:0
作者
Elvira, Victor [1 ]
Martino, Luca [2 ]
Luengo, David [3 ]
Bugallo, Monica F. [4 ]
机构
[1] Univ Carlos III Madrid, Dept Signal Theory & Commun, E-28903 Leganes, Spain
[2] Univ Sao Paulo, Inst Math Sci & Comp, Sao Carlos, SP, Brazil
[3] Univ Politecn Madrid, Dept Signal Theory & Commun, Madrid, Spain
[4] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA
来源
2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP) | 2016年
关键词
Multiple importance sampling; variance reduction; Monte Carlo methods; Bayesian inference;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we introduce multiple importance sampling (MIS) approaches with overlapping (i.e., non-disjoint) sets of proposals. We derive a novel weighting scheme, based on the deterministic mixture methodology, that leads to unbiased estimators. The proposed framework can be seen as a generalization of other well-known MIS algorithms available in the literature. Furthermore, it allows us to achieve any desired trade-off between the variance of the estimators and the computational complexity through the definition of the sets of proposals. Simulations using a bimodal target density show the good performance of the proposed approach.
引用
收藏
页数:5
相关论文
共 10 条
[1]  
[Anonymous], 2004, Springer Texts in Statistics
[2]   Population Monte Carlo [J].
Cappé, O ;
Guillin, A ;
Marin, JM ;
Robert, CP .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (04) :907-929
[3]   Adaptive Multiple Importance Sampling [J].
Cornuet, Jean-Marie ;
Marin, Jean-Michel ;
Mira, Antonietta ;
Robert, Christian P. .
SCANDINAVIAN JOURNAL OF STATISTICS, 2012, 39 (04) :798-812
[4]  
Doucet A., 2009, The Oxford Handbook of Nonlinear Filtering, V12, P3, DOI DOI 10.1111/1467-9868.00280
[5]  
Elvira V., 2015, ARXIV151103095
[6]   Efficient Multiple Importance Sampling Estimators [J].
Elvira, Vctor ;
Martino, Luca ;
Luengo, David ;
Bugallo, Monica F. .
IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (10) :1757-1761
[7]   NOVEL-APPROACH TO NONLINEAR NON-GAUSSIAN BAYESIAN STATE ESTIMATION [J].
GORDON, NJ ;
SALMOND, DJ ;
SMITH, AFM .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (02) :107-113
[8]  
Liu J. S., 2004, MONTE CARLO STRATEGI
[9]   An Adaptive Population Importance Sampler: Learning From Uncertainty [J].
Martino, Luca ;
Elvira, Victor ;
Luengo, David ;
Corander, Jukka .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (16) :4422-4437
[10]   Safe and effective importance sampling [J].
Owen, A ;
Zhou, Y .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (449) :135-143