Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles

被引:443
作者
Nicoletti, Olivia [1 ]
de la Pena, Francisco [1 ]
Leary, Rowan K. [1 ]
Holland, Daniel J. [2 ]
Ducati, Caterina [1 ]
Midgley, Paul A. [1 ]
机构
[1] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England
[2] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB2 3RA, England
基金
美国国家科学基金会; 欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
RECONSTRUCTION; ENERGY; TOMOGRAPHY; SUBSTRATE; MODES; GOLD; EELS;
D O I
10.1038/nature12469
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The remarkable optical properties of metal nanoparticles are governed by the excitation of localized surface plasmon resonances (LSPRs). The sensitivity of each LSPR mode, whose spatial distribution and resonant energy depend on the nanoparticle structure, composition and environment, has given rise to many potential photonic, optoelectronic, catalytic, photovoltaic, and gas-and bio-sensing applications(1-3). However, the precise interplay between the three-dimensional (3D) nanoparticle structure and the LSPRs is not always fully understood and a spectrally sensitive 3D imaging technique is needed to visualize the excitation on the nanometre scale. Here we show that 3D images related to LSPRs of an individual silver nanocube can be reconstructed through the application of electron energy-loss spectrum imaging(4), mapping the excitation across a range of orientations, with a novel combination of non-negative matrix factorization(5,6), compressed sensing(7,8) and electron tomography(9). Our results extend the idea of substrate-mediated hybridization of dipolar and quadrupolar modes predicted by theory, simulations, and electron and optical spectroscopy(10-12), and provide experimental evidence of higher-energy mode hybridization. This work represents an advance both in the understanding of the optical response of noble-metal nanoparticles and in the probing, analysis and visualization of LSPRs.
引用
收藏
页码:80 / +
页数:12
相关论文
共 43 条
[1]   Fast tomographic reconstruction on multicore computers [J].
Agulleiro, J. I. ;
Fernandez, J. J. .
BIOINFORMATICS, 2011, 27 (04) :582-583
[2]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[3]   Reducing the missing wedge: High-resolution dual axis tomography of inorganic materials [J].
Arslan, Ilke ;
Tong, Jenna R. ;
Midgley, Paul A. .
ULTRAMICROSCOPY, 2006, 106 (11-12) :994-1000
[4]   Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes [J].
Boudarham, Guillaume ;
Kociak, Mathieu .
PHYSICAL REVIEW B, 2012, 85 (24)
[5]  
Buckheit J.B., 1995, WAVELETS STAT, P55
[6]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[7]  
Comon P, 2010, HANDBOOK OF BLIND SOURCE SEPARATION: INDEPENDENT COMPONENT ANALYSIS AND APPLICATIONS, P1
[8]   Relativistic energy loss and induced photon emission in the interaction of a dielectric sphere with an external electron beam [J].
de Abajo, FJG .
PHYSICAL REVIEW B, 1999, 59 (04) :3095-3107
[9]   Mapping titanium and tin oxide phases using EELS: An application of independent component analysis [J].
de la Pena, F. ;
Berger, M. -H. ;
Hochepied, J. -F. ;
Dynys, F. ;
Stephan, O. ;
Walls, M. .
ULTRAMICROSCOPY, 2011, 111 (02) :169-176
[10]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306